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Design of Deadlock Prevention 
Supervisor in Waterway with 
Multiple Locks and Canals
Danko Kezić1, Stjepan Bogdan2, Josip Kasum3

To avoid conflict and deadlock states in waterway with 
multiple locks and canals, a computer based traffic management 
system with proper control policy must be applied. The paper 
proposes a formal method for design of deadlock prevention 
supervisor by using discrete event theory, multiple reentrant 
flowlines class of Petri net and P-invariants control places 
calculation. By using and/or matrix algebra, authors analyze the 
structural characteristics of Petri net in order to find first and 
second level deadlocks. First level deadlocks are prevented by 
maintaining the number of vessels in the critical subsystems 
below the number of vessels in the critical circuits. A method for 
second level deadlock prevention, which is based on P-invariants, 
ensures that the key resources would not be the last available 
resources in the system. Functionality of the supervisor is verified 
by a computer simulation using Matlab software with Petri net 
toolbox and P-timed Petri net model of waterway.
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1. INTRODUCTION

A waterway is any navigable body of water, such as river, 
lake, sea, ocean, and canal. Some waterways are combination of 
rivers, lakes and narrow canals with different levels of water. In 
such waterways, herein named complex waterway system (CWS), 
vessels must use multiple locks (devices for raising and lowering 
boats between stretches of water of different levels) to move 
through the system of locks and canals.

Safe navigation in CWS is very demanding process and 
needs coordination between crew members aboard vessel and 
traffic management staff on the ground. Some of the problems 
that need to be solved by the traffic management staff are: a) 
How to control traffic in a way that vessels moving in opposite 
directions make as few stops as possible during the passage 
through the waterway (maximally permissive control policy)? b) 
How to resolve possible conflicts in case that more vessels try to 
acquire particular lock (canal, basin) at the same time? c) How to 
avoid possible deadlocks in the dense traffic?

To resolve above mentioned problems in situations of dense 
traffic in waterway system, a computer based traffic management 
system (TMS), which observes and controls vessels in CWS, must 
be applied. Intelligent traffic management system is also used for 
real-time traffic management of the urban motorway network 
(Hernandez, et. al., 2002).

The exact positions of the vessels in CWS can be 
monitored by using DGPS and AIS on board ship with wireless 
communication between vessels and TMS. In our approach locks, 
canals and basins are treated as resources of the CWS. Resource 
can be non-shared (resource that can be occupied by the vessels 
moving in only one direction), and also shared (resource that can 
be occupied by the vessels moving in the opposite directions). 
The availability of resources is monitored by various electronic 
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sensors like camera or proximity sensors. Main task of TMS is 
not only to analyze data from sensors, but also to evaluate 
traffic situation, and advise the traffic management staff how to 
resolve ongoing situation. Properly designed TMS should have 
the properties of an expert that is capable to cope with complex 
traffic situations in CWS. 

The vessels moving through the resources of CWS, can 
generally be described as a discrete event system (DES), which 
consists of discrete states and events. Some of these states, such 
as conflicts and deadlocks, are undesirable (even dangerous). In 
this view, TMS should implement supervisory policy that prevents 
execution of some events (entering or leaving lock, canal, basin) 
in order to restrict the set of reachable discrete states in the 
system to the set of permissible (safe)  states.  This can be done 
by direct control of CWS traffic lights system or throughout a set 
of recommendations to CWS human operator.

The method of deadlock prevention by control places 
was developed in (Barkaoui & Abdallah, 1995). An algorithm for 
deadlock prevention for the ordinary and conservative S3PR class 
of Petri nets was developed in (Ezpelta, et al.,1995). The paper 
from Ezpelta et al. (1995) is usually considered to be the first 
that uses structural analysis to design monitor-based liveness-
enforcing Petri net supervisor for the flexible manufacturing 
systems (FMS). The algorithm for finding the minimal siphons 
inside the net as well as the algorithm for deadlock prevention 
by control places for ordinary Petri nets which do not contain 
source places was investigated in (Lautenbach & Ridder, 1996). 
Further, an efficient algorithm for deadlock prevention in the 
specific class of Petri nets that describes FMS was developed in 
(Lewis, et al., 1998). A deadlock prevention which uses iterative 
siphon control method is described in (Iordache & Moody, 
2000) and (Kezić, et al., 2006). Similar approaches can be found 
in (Barkaoui, et al. 1997), (Barkaoui & Petrucci, 1988), (Tricias, et 
al. 2000), (Tricas, et al., 2005). Deadlock prevention policy based 
on elementary siphons for FMS is proposed in (Mingming, et. al., 
2009). The divide-and-conquer strategy is used in (ZhiWu Li, et. 
al., 2009) to investigate the deadlock prevention in FMS. Efficient 
deadlock prevention in Petri nets through the generation of 
selected siphons is proposed in (Piroddi, et. al., 2009).

This paper presents enhancement of the algorithm 
presented in (Kezić, et al. 2009) where deadlock avoidance 
algorithm for river traffic system uses multiple re-entrant 
flowlines class of Petri net (MRF1PN) with only one key resource 
(Bogdan, et al., 1997). Herein we propose a solution in case of CWS 
with multiple key resources. The solution represents deadlock 
prevention supervisor in a sense that vessels are stopped only in 
a case of immediate dangerous situation in dense traffic.

The first task in TMS design is modeling of the traffic 
system by using MRF1PN, which consists of disjoint sets of job 
and resource places. The second task is structural analysis of 
MRF1PN, i.e. determination of simple and cyclic circular waits, 

critical siphons, and finally critical subsystems. To avoid first level 
deadlocks, it is necessary to control number of vessels in every 
critical subsystem. In Petri net formalism this can be achieved by 
adding additional control places which block firing of particular 
transition and restrict the number of tokens in critical subsystems. 
For prevention of second level deadlocks one has to take care of 
so called key resources, i.e. the supervisor must ensure that the 
key resources are not the only available resources in the net. 

The paper is organized as follows: section 2 reviews basics 
of supervisory control and Petri net theory. Section 3 describes 
P-invariant method of control places design. In section 4, a matrix 
description of MRF1PN is presented and modeling of CWS with 
MRF1PN is described. A matrix approach to deadlock prevention 
supervisor design, using MRF1PN, is shown in section 5. Finally, 
a case study example of supervisor design for CWS, similar to 
Panama canal, is given in section 6.

2. BASICS OF SUPERVISORY CONTROL AND PETRI NET 

A process can be defined as a set of interdependent tasks or 
jobs which are necessary to achieve a goal. In this paper, the main 
goal is to achieve uninterrupted passage of vessels through CWS. 
The supervisor has to ensure that the process does not get into 
any of forbidden states and that it performs in accordance with 
the given requirements (Charbonnier, et al., 2001).

The theory of DES supervisory control deals with the 
problem of synthesis of the supervisor, which is connected to 
the given process in closed loop, and which ensures the desired 
behavior of the whole system. The theory of supervisory control 
is described in (Boffey,  1982), (Overkamp & Van Schuppen, 1995), 
(Vaz & Wonham, 1986), (Yamalidou, et al., 1996). The theory 
originates from the language theory generated by the automata 
and Petri nets, a useful tool for analyzing DES (Hopcroft & Ullman. 
1979). Petri nets formalism is a graphical and mathematical tool 
adapted to the modeling of the main features of discrete event 
systems (Gallego et. al, 1996).

The basics of supervisory control can be described using 
Fig 1. Suppose that the process G can be modeled as a DES with 
the finite set of discrete states and events. Every task or job in 
the process can be modeled as particular state. The sequence 
of the jobs in the process G causes changing of the states and 
generates set of events s. The behavior of process G, as a rule, 
does not correspond to the specified process requirements 
(process G, for example, may get into a so called deadlock state – 
the state in which no more events are possible) and therefore it is 
necessary to “modify” its behavior by introducing the supervisor 
S. The supervisor S, which is also DES, is connected into a closed 
loop with the process G. The task of the supervisor S is to monitor 
generated events s from the process G and, if necessary, block 
events in the process G which can cause forbidden state. In 
other words, the task of the supervisor S is to restrict the set of 
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events generated by the process G to the set of allowable events
( )S sγ = . This ensures absence of unallowable forbidden states 

in process G.

In this paper, we are using Petri net theory for modeling 
process G, and designing appropriate supervisor S. The advantage 
of Petri nets as compared to other DES modeling methods is 
in their rich structure, which enables the analysis of numerous 
characteristics of the system from the structure of the net itself, 
and without having to analyze the whole discrete state space.
Place - transition P/T Petri net is a 6-tuple (Murata, 1989):

= -A O I  (2)

where elements ija+ and ija−  of O  and I  are:
( , )ij i ja w p t+ =  if ( , )i jp t ∈ I  and 0ija+ = otherwise,
( , )ij j ia w t p− =  if ( , )j it p ∈O and 0ija− = otherwise.

The matrices I  (input matrix) and O  (output matrix) 
provide a complete description of the structure of a Petri net. 
If there are no self loops p p• ∩ • =∅ , the structure can be 
described by incidence matrix A . The incidence matrix allows an 
algebraic description of the evolution of Petri net:

σ= + ⋅T
k+1 km m A  (3)

where:
A  - incidence matrix,
σ  - firing vector.

The firing vector σ  is composed of non-negative integers 
that correspond with the number of times a particular transition 
has been fired between markings km  and k+1m .

A PN is said to be live if, no matter what marking has been 
reached from the initial marking 0m , it is possible to ultimately 
fire any transition of the net by progressing through some further 
firing sequences. A transition t T∈  is said to be dead at m  if there 
exists no ( )′∈ℜm m  that enables it, with ( )ℜ m  defined as the 
set of markings reachable from m . A marking m is said to be 
dead if no t T∈  is enabled at m . A place p P∈  is said to be dead 
or deadlocked at m  if 0′= =m m  for all ( )′∈ℜm m . P  invariant 
corresponds to the set of places whose weighted token count 
remains constant for all possible markings. P  invariant P  can be 
found by solving equation:

0⋅ =A P  (4)

Siphon S is the set of Petri net places for which holds that 
each transition having an output arc from S also has an input 
arc into the S ( S S• ⊆ • ). Trap T is the set of places for which it 
holds that each transition having an input arc into T also has an 
output arc from T ( T T•⊆ • ). Once the trap becomes marked, it 
will always be marked for all future reachable markings. Once 
the siphon becomes empty, it will always remain empty (Murata, 
1989). 

A reachability set or reachability tree shows the set of 
all possible markings reachable from 0m  and displays every 
possible state that can occur in the Petri net after firing all 
transitions. It is possible to see some important PN properties 
like boundness (no capacity overflow), liveness (absence of 
deadlock), conservativeness (conservation of no consumable 
resources), and reversibility (cyclic behavior) from the reachability 

Figure 1.
Process and
supervisor in
closed loop.
Source: authors.

( , , )Q P T , , ,= 0I O M m  (1)

where:
{ }1 2, , ..., nP p p p= - set of places,
{ }1 2, , ..., nT t t t= - set of transitions,

P T∩ =∅ ,

( ) : {0,1}nxm P T× →I - an input incidence matrix,

( ) : {0,1}nxm T P× →O - an output incidence matrix,
{1,2,3, ...}: , →M I O - is a weight function,

0m - initial marking.

Places and transitions v P T∈ ∪  are calling nodes and 
denote states and events in the DES. Given any node v , let 

v•  and v •  denote pre-set and post-set of v , i.e. the set of 
nodes that have arcs to and from v , respectively. An available 
resource or an ongoing job in DES is indicated by token in 
respective place. Transition t T∈  is enabled at marking ( )m p  iff 

, ( ) ( , )p t m p w p t∀ ∈• ≥  ( t•  is a set of input places to transition t
, and ( , )w p t  is weight of the arc between p  and t ).  Transition 
t  that meets enabled condition is free to fire. When transition t  
fires, all of its input places lose ( , )iw p t  tokens, and all of its output 
places gain ( , )jw t p  tokens. In Petri net Q  with n  transitions and 
m  places, the incidence matrix A is an n m×  matrix defined as:
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tree. An algorithm for calculating reachability tree is shown in 
(Kezić, 2004).

Example:
A simple P/T Petri net with 6 places (circles) and 5 transitions 

(bars) is shown in Fig.2 a. Reachability tree is shown in Fig. 2b. 
Petri net in Fig 2a) is safe because the maximum number of 

tokens in the places is 1, and is partially reversible because it is 
possible to reach initial state 0m  after firing transitions 1 3 5{ , , }t t t .
Firing the 

4
t  from the state 3m  cause deadlock state 4m . From 

the state 4m  it is not possible to reach any other state.
The net in Fig 2 is not live. There are no place invariants in 

the net. The incidence matrix A  of Petri net in Fig. 2 is:

1 1 1 1 0 0
0 1 1 0 1 0
0 0 1 1 0 1
0 0 0 1 0 0
1 1 0 0 1 1

− − − 
 − 
 = −
 
 
 − 

A

3. P-INVARIANT BASED CONTROL PLACE 
CALCULATION

Petri net model of a process, so called Process Petri net 
(PPN), may contain forbidden states. These states can be avoided 
by using control places, which must be added and connected 
to the PPN. These control places form Supervisor Petri net 
(SPN). P-invariant method for control place calculation is one of 
techniques for SPN design. Short overview of this technique is 
shown in this paper. More can be found in (Iordache & Moody, 
2000).

Suppose that process G is DES and is modeled by a PPN 
described by process incidence matrix Ap=[ai,j]nxmp.

The supervisor S, in the form of SPN, prevents occurrence of 
forbidden states FM , by applying constraints to the set of all 
reachable states of PPN. SPN can be described by supervisor 
incidence matrix Ap=[ai,j]nxmc) .
To connect process G and supervisor S in closed loop (Fig 1), SPN 
and PPN connect together and form a new Composite Petri net 
(CPN) without forbidden states.
The CPN incidence matrix Apc=[ai,j]nx(mp+mc) describes a topology 
of composite Petri net. Each supervisor control place defines 
a constraint over the set of reachable states of the PPN. The 
constraint can be expressed in the form of linear inequality:

1

( )
m

i i
i

I m p β
=

≤∑  (5)

in which:
( )im p  - number of tokens in place ip ,

iI β  - integer constants.

The set of inequalities (5) can be transformed into matrix 
equation:

⋅ + =p cL m m b  (6)

in which:
L  - constraints matrix c pg m× ,
b  - vector 1cm × ,

pm  - marking vector of PPN 1pm × ,

cm  - marking vector of SPN 1cm × .

cg  - number of constraints.

Note that the number of control places cm  must be equal 
to the number of constraints cg , so cg = cm

P  invariant P , defined by relation (4), must satisfy the 
requirements of equation (6) so we can calculate supervisor 

Figure 2. 
P/T Petri net
 a) and its reachability 
tree b).
Source: authors.

a) b)
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incidence matrix cA  and supervisor initial marking c0m  as:

= − ⋅ T
c pA A L  (7)

= − ⋅c0 p0m b L m  (8)

in which:

c0m  - SPN initial marking,

p0m  - PPN initial marking.

Matrix cA  and vector c0m  completely determine initial 
marking of control places, as well as the connection between 
each control place and other places of PPN.

The complete CPN design is partitioned in the following 
steps:
1. Determine a PPN. From the PPN it is possible to define process 
incidence matrix Ap=[ai,j]nxmp) and p0m ,
2. Define the set of constraints of type (6) in order to reduce the 
set of reachable markings to allowed states,
3. Calculate cA  and c0m  from equations (7) and (8),
4. Design a CPN from the composite incidence matrix pcA . Check 
the set of reachable markings.
5. If there are forbidden states in CPN, go to step 2.

4. MODELING CWS WITH MRFPN

Deadlock prevention supervisor design begins with the 
traffic system modeling by using MRF1PN, which is a subclass of 
P/T Petri net specially designed for analysis of multiple re-entrant 
flowlines flexible manufacturing systems (MRF system).

4.1 MRF
1
 Petri net

In the MRF1PN, each part type k∈Π  is characterized by 
predetermined sequence of jobs { }1 2, , ...,

k

k k k k
LJ J J J= , with at least 

one resource for each job ( kL is the number of jobs for particular 
part type k ). Let R  denote the set of system resources, with 
each r R∈  a pool of multiple copies of a given resource. Places 
P  are divided in the MRF1PN as in outP R J J J= ∪ ∪ ∪ with R ,

inJ , outJ  and J  as the set of places respectively representing 
the availability of resources, units arrivals and finished units, 
and J  as the set of places representing the ongoing jobs. The 
set of transitions T  can be partitioned as k

kT T∈Π=∪ , where 

1 2 1{ , , ..., }
k

k k k k
LT t t t += , with 1

k k k
i i it J J −= • = • , for {1, }ki L∉ ; while 

1 1
k k k

int J J= • = •  and 1k k

k k k
L out Lt J J+ = • = • . Transition t  is said to be 

job (resource) enabled if ( ) 0m t J• ∩ >  and ( ) 0m t R• ∩ > . For 
any r R∈ , define the job set ( )J r as the set of jobs using r , and 
resource loop ( ) ( )L r r J r= ∪ . Given a set of resources Q R⊂ , 
define the job set of Q  as ( ) ( )r QJ Q J r∈=∪ . We denote ( )k

iR J  as 
the set of resources used by job k

iJ .
MRF1PN satisfies following conditions: (i) p P∀ ∈ , 

p p• ∩ • =∅ ; (ii) k∀ ∈Π , 1 \kt P J•∩ =∅  and 
1

\
k

k
Lt P J

+
• ∩ =∅ ; 

(iii) k
iJ J∀ ∈ , ( ) 1k

iR J =  and 1( ) ( )k k
i iR J R J +≠ ; (iv) k

iJ J∀ ∈ , 1k
iJ • =

; (v) k
it J∀ ∈ , 1k

it J• ∩ ≤ ; (vi) r R∀ ∈ , ( ) 1J r ≥ . This means that 
(i) there are no self loops, (ii) each unit-path has a well defined 
beginning and an end, (iii) every job requires one and only 
one resource with no two consequent jobs using the same 
resource, (iv) and (v), there are no choice jobs and no assembly 
jobs, (vi) there are shared resources. In MRF1PN, for any r R∈
, ( )J r r J r J= ••∩ = •• ∩  and ( )k k k

j j jR J J R J R= •• ∩ = ••∩  For 
any two ,i jr r R∈ , ir  is said to wait jr , denoted i jr r→ , if the 
availability or jr  is a immediate requirement for the release or 

ir , i.e., i jr r• ∩ • ≠∅ , or equivalently, if there exists at least one 
transitions i jt r r∈• ∩ • .

Any set of resources is called circular wait CW,  if among the 
set of resources , , ...,a b wr r r  exist wait relations among them such 
that ...a b wr r r→ → →  and w ar r→ . CW relations are characteristic 
among shared and nonshared resources in MRF1PN and contain 
at least one shared resource. Simple circular wait (SCW) is 
composed of different resources while cyclic circular wait (CCW) is 
composed of unions of nondisjoint simple CWs. Deadlock in the 
MRF1PN is connected with the system condition called circular 
blocking CB, which is a consequence of the existence of circular 
wait relations CW among resources in the system. A CW C is said 
to be in CB if (i) ( ) 0m C = ; and (ii) for each r C∈ , ( )p J r∀ ∈ with 

( ) 0m p ≠ , p C•∈ • . Avoiding CB is necessary but generally not 
sufficient for deadlock-free dispatching policy.

To prevent deadlock in MRF1PN we must first avoid CB 
conditions, which are closely related to the critical siphon. A critical 
siphon S  is a minimal siphon that does not contain any resource 
loop. The next step is to find sets of job places, so called critical 
subsystems 0 ( )J C , A CW C is in CB at any ( )∈ℜ0m m  if and only if 
particular critical siphon becomes empty ( ( ) 0Cm S = ). The critical 
siphon is empty if and only if 0 0( ( )) ( )m J C m C= ; or equivalently, to 
avoid deadlock we must ensure that the ( ) 0Cm S ≠  by applying 
constraint 0 0( ( )) ( )m J C m C<  to the set ( )ℜ 0m . The token sum 
in the critical subsystem 0( )J C  must be limited above value 

0( ) 1m C − . To achieve this, we must connect control places to PPN 
which form P-invariant with critical subsystems 0( )J C .

The deadlock which occurs due to improper “loading” of 
critical systems 0( )J C  is called first level deadlock. The system 
for which avoiding CB is a necessary and sufficient condition for 
avoiding deadlock is so called regular system. Regular systems 
contain only first level deadlocks. The above is not true for 
irregular systems. The irregular system contains a key resource. 
It must be noted that when system contains a key resource, the 
system may have so called cyclic circular wait relation CCW, that, 
in particular circumstances, could lead in so called second level 
deadlock. A second level deadlock is a state that is not currently 
a deadlock, but leads to a deadlock after the next transitions. To 
avoid second level deadlocks, one must find key resources and 
apply such control policy that key resource does not remain the 
last available resource in CCW.
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This paper focuses on the design of a deadlock prevention 
supervisor for CWS system which contains only first and second 
level deadlocks. However, there are other systems with higher 
level deadlocks, and the deadlock free supervisor design for such 
systems is presented in (Lee & Tilbury, 2007)

Example:
Fig 3. which shows MRF1PN with one input and one 

output place 1inJ p=  and 6outJ p= . There is a set of job places 

2 3 4 5{ , , , }J p p p p= , a set of resource places 1 2 3{ , , }R r r r= , one SCW 

1 2 3{ , , }C r r r=  and one critical subsystem 0 2 3 4( ) { , , }J C p p p=  . Initial 
marking of SCW is 0( ) 3m C = .

Matrix pA  and p0m  of PPN (MRF1PN in Fig 3 without 1c
) are:

1 1 0 0 0 0 0 0 1
0 1 1 0 0 0 1 0 1
0 0 1 1 0 0 1 1 0
0 0 0 1 1 0 0 1 1
0 0 0 0 1 1 0 0 1

− − 
 − 
 = − −
 

− − − 
 − 

pA

[ ]4 0 0 0 0 0 1 1 1
T=p0m

To avoid deadlock, one must apply constraint 

2 3 4( ) ( ) ( ) 2m p m p m p+ + ≤ , hence:
[ ]0 1 1 1 0 0 0 0 0=L , [ ]2=b .

By using (7) and (8) it is possible to calculate control matrix cA  
and s0m :

[ ]1 0 0 1 0
T= −cA

[ ]2=c0m
From [ ]1 0 0 1 0

T= −cA  it is clear that SPN has 
control place 1c , with one input arc from 4t  and one output 
arc to 1t . Control place 1c  maintains the number of tokens in 
the critical subsystem to maximum 2. It should be noted that 
the system in Fig 3. is regular as there are no key resources and 
second level deadlocks.

One way to calculate supervisors for complex systems is to 
describe MRF1PN by system matrices. There are two sets of system 
matrices: , , ,u y v rF F F F  and , , ,u v r yS S S S . Matrices F  capture 
conditions that must be fulfilled before firing of transitions, while 
matrices S  are responsible for actions after firing of transitions. A 
number of rows of , , ,u y v rF F F F  define the number of transitions, 
while the number of columns defines the number of input 
places, jobs, resources and output places respectively. A number 
of columns of , , ,u v r yS S S S  define the number of transitions, 
while the number of rows defines the number of input places, 
jobs, resources and output places respectively. Each entry ( )r ijf  
in the resource-requirements matrix rF  is associated with an arc 
connecting a place, representing resource availability, with the 
corresponding transition; each entry ( )r ijs  in the resource-release 
matrix rS  expresses the connections between transitions and 
places that hold tokens when resources are idle. Correspondingly, 
each entry ,( )v i jf  and ,( )v i js  in job-sequencing matrix vF  and job-
start matrix vS  represent arcs connecting transitions and places 
associated operations executed by resources. The input matrix 

uF  portrays output arcs from input places, while output matrix 

yS  depicts input arcs to output places. Since we assume that 
input places are source places (places with no input transitions) 
and output places are sink places (places with no output 
transitions), matrices yF  and uS  are null matrices, [ ]0= =y uF S . 
As a result, PN input and output incidence matrices I  and O  can 
be obtained from the system matrices:

 = = u v r yI F F F F F  (9)

 = = 
T T T T T
u v r yO S S S S S  (10)

System matrices , , ,u y v rF F F F  and , , ,u v r yS S S S  can be 
derived directly from the MRF1PN.

Figure 3. 
MRF1PN class of Petri net.
Source: authors.
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5. MATRIX APPROACH OF DEADLOCK PREVENTION 
SUPERVISOR DESIGN USING MRF

1
PN

The procedure for finding deadlock prevention supervisor 
for PPN can be divided in eight steps:

Step 1: Find all resource loops ( )L r  via computing their 
covering binary P-invariants. The binary basis for P-invariants is 
given by the columns of the matrix P :

1 1ˆ ˆˆ ˆ( ) ( )T T
v v r r

r r

S F S F

I

− −

×

 − − ⋅ −
=  
  

P  (11)

where:

r r×I  -   identity matrix with r resources in the system
Matrices v̂F  and r̂F  are formed by deleting rows that 

correspond to the terminal transitions. Matrices ˆ
vS  and ˆ

rS  are 
formed by deleting columns that correspond to the terminal 
transitions. Terminal transition have output arc to outJ .

Step 2: Find wait relation matrix wG , all SCW and CCW. Wait 
relations are captured by the wait relation matrix:

= ⊗w r rG S F  (12)

Where matrix operation ⊗  is defined in and/or algebra, i.e. 
standard addition and multiplication of matrices elements are 
replaced by the logical “and” and “or”, respectively.

Having obtained matrix wG , there are standard efficient 
techniques of polynomial complexity, such as string algebra, for 
identifying matrices C  and Ø . From ( )r SCW CCW× +C  it is possible to 
determine all iC , and from ( )SCW SCW CCW× +Ø  it is possible to detect 
which SCW-s are involved in particular CCW. Columns of matrix 
C  which contain non shared resources are denoted by vector 

iC , and those containing shared resources are denoted by vector 

siC  (Bogdan, et al., 2006).

Step 3: Find critical siphons matrix 
iC

S  and critical subsystem 
matrix ( )0J C   by using equations:

 ⊗ ⊗ ∧ ⊗ ⊗=  
  

i

T T T
si r v i r v

C

i

c S F c F FS
c

 (13)

( ) = ⊗ ∧0 cJ C P C S  (14)

Where matrix operation ∧  denotes element-by element 
logical “and” operation.

Columns of matrix 
iC

S  are critical siphons, and column of 
matrix ( )0J C  are critical subsystem.

The DES modeled by MRF1PN can be regular or irregular. 
For regular system, only condition for deadlock free policy is that 
the token count in the critical subsystem must be controlled to 
ensure the system stability in sense of deadlock. If the system is 

irregular, than the second level deadlock can arise, and one must 
find key resources, which can be done by using next step.

Step 4: Key resources can be identified by analyzing 
interconnections of SCWs and their siphons. To confirm the 
existence of key resources, one must determine presence of CCW 
loops. These structures specify a particular sharing among circular 
waits, and are a requisite for the existence of key resources. To 
find CCWs among all CWs in the system, one must calculate CWC :

( ) ( )= ⊗ ∧ ⊗
C C C C

-T + T -T +
CW S S S SC T T T T  (15)

where:
( )= ⊗ − ⊗ ∧ ⊗

C

-T T T T T
S oc v oc v oc vT v S v S v F  - is matrix containing 

transitions which decrease token counts in every critical siphon
and 

( )= ⊗ − ⊗ ∧ ⊗
C

+ T T T T
S oc v oc v oc vT v S v S v F  - is matrix containing 

transitions which increase token counts in every critical siphon,

ocv  - critical subsystems matrix.
When [ ]0=CWC  the system is regular, otherwise an 

element ( , ) 1CWC i j =  indicates that iC  and jC  form a CCW. 
Obviously CWC  is symmetric matrix. 

To identify the key resources we must apply the following 
straightforward matrix formula:

( ) ( )= ⊗ ∧ ⊗T + T -
CCW r CCW r CCWR F T F T  (16)

where:
( )= ⊗ ∧

C C

- + +
CCW S CW ST T C T  - matrix containing transitions 

which decrease token counts in CCWs
( )= ⊗ ∧

C C

+ - +
CCW S CW ST T C T  - matrix containing transitions 

which increase token counts in CCWs
Matrix CCWR  provides key resources which are shared with 

other CWs in one or more CCW. If this matrix is zero, there are no 
key resources in the system.

Step 5: To avoid first level deadlock, one must define a 
set of constraints of type (5) to ensure that the token count in 
each critical subsystem 0( )J C  remains below 0( ) 1m C − . Using P 
invariant method (section 3), calculate a control place for each 

0( )J C  and add to PPN to derive CPN. 

Step 6: After identifying all key resources in step 4, one must 
find all second level deadlocks in the CPN derived in step 5. These 
second level deadlocks arise when one or more key resources 
become last available resources in the net. To find second level 
deadlocks, one must calculate reachability tree (Kezić, 2004). 

Step 7: To avoid second level deadlocks in step 6, the 
constraints of type (5) must be applied to the CPN. The new 
control places can be calculated using P-invariant method 
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described in section 3 and added to Petri net to derive final CPN 
for irregular system.

Step 8: Find reachability tree of the CPN derived in step 7. 
If there are new deadlocks go to step 5, otherwise the algorithm 
ends and final deadlock free CPN is found.

6. DEADLOCK AVOIDANCE IN WATERWAY WITH 
MULTIPLE LOCKS AND CANALS – CASE STUDY

This chapter deals with a supervisor design of the CWS 
(Fig. 4). This example will clarify the theory presented in previous 
sections. The presented case study example is very similar to the 
Panama canal. However, the above theory is applicable for more 
complex systems.

The CWS in Fig.4 connects two oceans, and consists of 2 
canals ( 1Cl , 2Cl ), 3 double locks ( 1L , 2L , 3L ) for lifting or lowering 
the vessels, 2 lakes or basins ( 1B , 2B ). Lake 1B  is above sea level, 
and lake 2B  is above water level of 1B . The vessels in direction A 
are moving thought the 1Cl , lift in lock 1L , move and wait for the 

availability of the lock 2L  in the lake 1B . Then lift in the lock 2L  to 
the level 2B , move toward the lock 3L  and lower to the sea level. 
The procedure for direction of B is inversed. The vessels can move 
through the CWS using their own propulsion, tugboats or towing 
vehicles. All canals, locks and basins represent resources of a 
CWS. The vessels in both directions share canals Cl and basins B .
All locks L  are one, two or three stages double locks with one 
side for direction A, and the other for direction B. 

Number of vessels in resources (capacity of resources) is, as 
a rule, limited due to the various reasons (numbers of available 
tugboats, weather conditions, water and sea conditions etc). 
If a particular resource is occupied in a moment of time, and 
if there are vessels waiting to use them, then these vessels 
wait for the availability of the occupied resource at the exit of 
the resource where they are in the moment of time. When the 
resource becomes available, it is occupied by awaiting vessels. 
The capacities ( )Cap r of canals and basins are 1 2( , ) 4Cap Cl Cl = ,

1( ) 5Cap B = , 2( ) 10Cap B = . The capacities of locks in direction 
A are: 1( ) 2Cap L = , 2( ) 1Cap L = , 3( ) 3Cap L =  (same capacity in 
direction B).

Figure 4.
Complex waterway 
system.
Source: authors.

Figure 5.
Process Petri net of CWS.
Source: authors.
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The first step which must be taken is to make MRF1PN model 
of CWS. Figure 5 shows PPN of CWS, and Table 1 describes places 
belonging to PPN. Tokens in input places 1 10{ , }p p  represent the 
vessels waiting for entering the system, and the tokens in the 
set of output places 9 18{ , }p p  represent the vessels leaving the 
system. The set of all places that represent jobs in the system (the 
number of tokens in a job place represent the number of vessels 
in particular resource) are 2 17{ , ..., }p p , and the set of places that 
represent availability of resources is 1 10{ , ..., }r r ( the number of 
tokens in a resource place represents the capacity of particular 
resource).

Table 1 shows description of the places ip  in the PPN (Fig. 
5), their initial marking ( )o im p , and time iT  in hours associated to 
the places (simulation in Fig 7, 8). Places 1 9 1 2 3{ , ..., , , , }p p r r r describe 
moving in direction A, places 11 18 4 5{ , ..., , , , }p p r r r  describe moving 
in direction B. Places 7 10{ , ..., }r r  are shared resources. 

There are two problems that must be solved. The first 
problem is a conflict, and the second problem is deadlock. The 
conflict arises when vessels from both directions try to occupy 
the same shared resources 7 10{ , ..., }r r  with limited capacity. In 
this situation the 4 pairs of transitions ( 1 15,t t  and/or 3 13,t t  and/
or 5 11,t t  and/or 7 9,t t ) can be in conflict (both transitions are 
enabled at the same time). A conflict free supervisor disables 
one of the transitions in conflict. Firing both of the transitions in 
conflict cannot occur simultaneously.

The second problem is how to design the deadlock free 
supervisor. The supervisor is required to be the maximally 
permissible i.e. not hindering the passage of the vessels. To 
achieve this we must apply matrix approach described in section 
6. Here are the results:

Step 1: The P invariants can be calculated applying (6). There 
are 10 P-invariants in the net: 1 3 1{ , }P p r= , 2 5 2{ , }P p r= , 3 7 3{ , }P p r=  

4 12 4{ , }P p r= , 5 14 5{ , }P p r= , 6 16 6{ , }P p r= , 7 2 17 7{ , , }P p p r= , 

8 4 15 8{ , , }P p p r= , 9 6 13 9{ , , }P p p r= , 10 8 11 10{ , , }P p p r=

Step 2: Applying (12) and string algebra we can find 3 SSW,

1 1 6 7 8{ , , , }C r r r r= , 2 2 5 8 9{ , , , }C r r r r= , 3 3 4 9 10{ , , , }C r r r r= , and 3 CCW:

4 1 2 1 2 5 6 7 8 9{ , , , , , , }C C C r r r r r r r= + = , 5 2 3 2 3 4 5 8 9 10{ , , , , , , }C C C r r r r r r r= + = ,

5 1 2 3 1 2 3 4 5 6 7 8 9 10{ , , , , , , , , , }C C C C r r r r r r r r r r= + + =

Step 3: By applying (13) and (14) it is possible to find all 
critical siphons and critical subsystems.

There are 6 critical siphons:

1 1 6 7 8 4 17{ , , , , , }CS r r r r p p= ,

2 2 5 8 9 6 15{ , , , , , }CS r r r r p p= ,

3 3 4 9 10 8 13{ , , , , , }CS r r r r p p= ,

4 1 2 5 6 7 8 9 6 17{ , , , , , , , , }CS r r r r r r r p p= ,

5 2 3 4 5 8 9 10 8 15{ , , , , , , , , }CS r r r r r r r p p= , 

6 1 2 3 4 5 6 7 8 9 10 8 17{ , , , , , , , , , , , }CS r r r r r r r r r r p p=
and 6 critical subsystems

Table 1.
Description of the PPN in Figure 5.
Source: authors.

pi Description mo ( pi ) Ti [h]

{p1} Waiting for  Cl1 20 0

{p2} Vessel is in  Cl1 0 0,9

{p3} Vessel is  L1 0 0,784

{p4} Vessel is in  B1 0 0,78

{p5}  Vessel is in  L2 0 0,39

{p6} Vessel is in  B2 0 3,77

{p7} Vessel is in  L3 0 1,69

{p8} Vessel is in  Cl2 0 0,9

{p9} Passed CWS 0 0

{p10} Waiting for  Cl2  20 0

{p11} Vessel is in  Cl2 0 0,9

{p12} Vessel is in  L3 0 1,69

{p13}  Vessel is in  B2 0 3,77

{p14} Vessel is in  L2 0 0,39

{p15} Vessel is in  B1 0 0,78

{p16} Vessel is in  L1 0 0,784

{p17} Vessel is in  Cl1 0 0,9

{p18} Passed CWS 0 0

{r1}  L1 is available 2 0

{r2}  L2 is available 1 0

{r3}   L3 is available 3 0

{r4}  L3 is available 3 0

{r5} L2 is available 1 0

{r6}  L1 is available 2 0

{r7}  Cl1  is available 4 0

{r8}  B1 is available 5 0

{r9}  B2  is available 10 0

{r10} Cl2 is available 4 0
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Figure 6.
Final Composite Petri net of CWS
Source: authors.

Figure 7.
CWS without supervisor.
Source: authors.

Figure 8.
CWS with supervisor.
Source: authors.

no
. o

f t
ok

en
s

Time [h]

10 2 3 15 16{ , , , }J p p p p= ,

20 4 5 13 14{ , , , }J p p p p= ,

30 6 7 11 12{ , , , }J p p p p= , 

40 2 5 13 16{ , ..., , , ..., }J p p p p=
,

50 4 7 11 14{ , ..., , , ..., }J p p p p= ,

60 2 7 11 16{ , ..., , , ..., }J p p p p= .

Step 4: To check if the system is regular, matrix CWC  must 
be calculated by applying (15). The system is irregular [ ]0≠CWC  
From CCWR , by applying (16), it is possible to see that the key 
resources in the system are 7r  and 8r  ( 1B and 2B ).

no
. o

f t
ok

en
s

Time [h]

Step 5: The initial markings of CWs are 0 1( ) 13m C =  

0 2( ) 17m C = , 0 3( ) 20m C = , 0 4( ) 25m C = , 0 5( ) 27m C =  and 

0 6( ) 35m C = . To avoid first level deadlock we can calculate 3 
control places ( 1S , 2S  and 3S ) for controlling 

10J ,
20J ,

30J . By 
applying constraints 0 0( ) ( ) 1m J m C≤ −  it is possible to calculate 

0 1( ) 12m s = , 0 2( ) 16m s = , 0 3( ) 19m s = . We are adding control 
places 1S , 2S and 3S  to the PPN (large circuits in Fig 5). There is 
no need for controlling 

40J , 
50J , 

60J .

Step 6: To ensure the absence of second level deadlock, the 
supervisor has to take care of the availability of key resources 7r  
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and 8r in the way that each of the resources and both of them 
must not remain last available resources in the system. From the 
reachability tree one can find three deadlocks which occur in 
case of:

2 3 13 14 1 5 7 9( ) ( )m p p p p m r r r r+ + + = + + + ,

4 5 11 12 2 4 8 10( ) ( )m p p p p m r r r r+ + + = + + +

2 3 11 12 1 4 7 10( ) ( )m p p p p m r r r r+ + + = + + +

Step 7: To avoid second level deadlocks in step 6 one must 
calculate additional control places 4 5 6, ,s s s  using the constraints:

Control place 4s :

2 3 13 14 1 5 7 9( ) ( ) 1m p p p p m r r r r+ + + ≤ + + + −
Control place 5s :

4 5 11 12 2 4 8 10( ) ( ) 1m p p p p m r r r r+ + + ≤ + + + −
Control place 6s :

2 3 11 12 1 4 7 10( ) ( ) 1m p p p p m r r r r+ + + ≤ + + + −
The initial markings are 0 4( ) 16m s = , 0 5( ) 12m s = , 

0 6( ) 12m s =  can be derived from (8). New control places 4s , 5s
and 6s are added to the PPN. 

Step 8: There are no new deadlocks in reachability tree of 
the CPN derived in step 7 and the algorithm ends. In total, six 
control places are added to the PPN to derive deadlock free CPN 
in Fig 6.

The deadlock prevention supervisor for CWS is verified 
using computer simulation and P-timed Petri net, in which 
time is associated to the particular places (see Table 1). Fig 7 
and Fig 8 show number of vessels in input and output places 
{ }1 9 10 11, , ,p p p p . First buffer first served control policy is applied, 
and maximum number of vessels in both directions passing 
through the CWS. Graph in Fig. 7 shows number of vessels in CWS 
without supervisor (deadlock occurs in critical system 

30J , 15 h 
after beginning of simulation). Fig 8 shows a deadlock free CWS 
with supervisor. All vessels passed CWS in 31 h.

7. CONCLUSION

This paper shows a straightforward matrix based method 
for calculating conflict and deadlock prevention supervisor using 
MRF1PN class of Petri net and P-invariant method for control 
places design. To achieve this, the first step is to make a suitable 
Petri net model of complex waterway system. Then, the structural 
properties of the Petri net, like P-invariants, circular waits, critical 
siphons and critical subsystems are investigated. The authors 
propose the addition of control places to the Petri net, which 
forms a supervisor. Conflicts and the first level deadlock can be 
avoided by adding control places, which disable firing of particular 
transitions and limit the number of vessels in critical subsystems. 
The second level deadlock can still exist if the system is irregular 
and if it contains so called key resource, and the existence of key 
resources must be checked. To avoid the second level deadlock, 
the supervisor must take care that one or more key resources 
would not be the last available resource in the net. The authors 
propose the novel method for second level deadlock prevention 
in case of more key resources. The calculated controller is verified 
using a P-timed Petri net model and computer simulation by 
using Matlab environment. The proposed matrix based method 
of supervisor design is not time consuming, and is suitable for 
design of complex traffic management system and can be easily 
implemented by men or by traffic lights. Future research will be 
focused on deadlock analysis and avoidance of systems with 
nondeterministic job routing.
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APPENDIX: LIST OF MATRICES

Step 1: P matrix

1 2 3 4 5 6 7 8 9 10

2

3

4

5

6

7

8

10

12

13

14

15

16

17

1

2

3

4

5

6

7

8

9

10

                                      

0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1
0 0 0 1 0

P P P P P P P P P P

p
p
p
p
p
p
p
p
p
p
p
p
p
p
r
r
r
r
r
r
r
r
r
r

0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

 
 
 
 
 
 































 

































Step 2: C matrix

1 2 3 12 23 123

1

2

3

4

5

6

7

8

9

10

                

1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1
0 0 1 0 1 1
0 1 0 1 1 1
1 0 0 1 0 1
1 0 0 1 0 1
1 1 0 1 1 1
0 1 1 1 1 1
0 0 1 0 1 1

C C C C C C

r
r
r
r
r
r
r
r
r
r

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Step 3: 
iC

S  and ( )0J C  matrices

1 2 3 4 5 6

2

3

4

5

6

7

8

11

12

13

14

15

16

17

1

2

3

4

5

6

7

8

9

10

               

0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 1 0 1 0 0
0 0 0 0 0 0
0 0 1 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 1 0 0 1 0
0 0 0 0 0 0
1 0 0 1 0 1
1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1
0 0 1 0 1 1

C C C C C CS S S S S S

p
p
p
p
p
p
p
p
p
p
p
p
p
p
r
r
r
r
r
r
r
r
r
r

iC
S

0 1 0 1 1 1
1 0 0 1 0 1
1 0 0 1 0 1
1 1 0 1 1 1
0 1 1 1 1 1
0 0 1 0 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 2 3 4 5 60 0 0 0 0 0

2

3

4

5

6

7

8

11

12

13

14

15

16

17

1

2

3

4

5

6

7

8

9

10

( )

               

1 0 0 1 0 1
1 0 0 1 0 1
0 1 0 1 1 1
0 1 0 1 1 1
0 0 1 0 1 1
0 0 1 0 1 1
0 0 0 0 0 0
0 0 1 0 1 1
0 0 1 0 1 1
0 1 0 1 1 1
0 1 0 1 1 1
1 0 0 1 0 1
1 0 0 1 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0

J J J J J J

p
p
p
p
p
p
p
p
p
p
p
p
p
p
r
r
r
r
r
r
r
r
r
r

0J C

0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 4,5: CWC   and CCWR  matrices

[ ]0≠CWC
 

1 2 3 4 5 6 7 8 9 10

1

2

3

12

23

123

                                                            

0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 1 0

r r r r r r r r r r

C
C
C
C
C
C

 
 
 
 

=  
 
 
 
  

CCWR
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