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Cutting-edge Mathematical Tools 
in Processing and Analysis of 
Signals in Marine and Navy
Igor Vujović1, Joško Šoda2, Ivica Kuzmanić3

Signal processing plays a pivotal role in information 
gathering and decision making. This paper presents and 
compares different signal processing techniques used in marine 
and navy applications, primarily based on using wavelets as 
kernel. The article covers Fourier transform, time frequency 
wavelet based techniques such as bandelets, contourlets, 
curvelets, edgelets, wedgelets, shapelets, and ridgelets. In the 
example section of the paper, several transform techniques are 
presented and commented on the harbour surveillance video 
stream example.
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1. INTRODUCTION

Modern electronic equipment such as GPS, radar, electronic 
charts, autopilot, alarm systems, automatic control systems 
regularly uses some sort of signal processing and analysis 
techniques. Signals can be divided in different sets such as 
stationary or non-stationary, periodic or aperiodic, deterministic 
or stochastic. They contain information in time, frequency and/
or any other spatial domain. Classical approach of extracting 
information from a signal is to transform the signal from the 
original domain, usually time domain, to the transformed 
domain, usually frequency domain. Frequency information of a 
given signal is usually compressed or embedded into the signal 
and could be extracted by applying one of the feature extraction 
techniques. Due to the fact that most of nowadays signals are 
of nonstationary and stochastic nature, and depending on the 
application, applying Fourier based techniques for signal analysis 
is not efficient. Therefore, novel mathematical tools were needed 
and have been proposed. 

Area of image processing and analysis had rapid 
development in many applications in last decade – so as in the 
marine. Image processing and analysis play important role in the 
cutting-edge applications, such as in security, contra-terrorism, 
cargo flow, smuggling of narcotics, people (trafficking) or other 
goods, etc. 

Among novel transforms, which are covered in the article, 
are wavelet-inspired transforms.

The paper is organized as follows. The Second section 
presents foundation of wavelet transforms chronologically, and 
various implementations. Also a Short Time Fourier Transform is 
presented as an introduction to time-frequency wavelet based 
techniques. The third section introduces and compares novel 
time frequency techniques based on wavelet kernel, such as 
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edgelets, curvelets, contourlets, bandelets, wedgelets, chirplets 
and grouplets. Wavelet based time frequency techniques 
introduced in the second and third sections are applied, on 
real time port surveillance video stream, in the fourth section. 
Appropriate comments are given and there is a conclusion in the 
last section of the paper.  

2. WAVELET BASED TIME FREQUENCY ALGORITHMS, A 
BRIEF INTRODUCTION

Fourier transform (FT) is a standard tool in many signal 
processing applications such as radio communications. FT is 
defined by (Proakis and Manolakis, 2007):

ω ωω ω
∞

−

−∞

= = ⋅∫ ( ( ))( ) ( ) ( )i t arctg FF f t e dt F e  (1)

where a ( )f t  is an observed signal in the time-domain, ω( )F  
a spectrum of the observed signal. For a given frequency, ω , 
equation (1) measures how much sine wave at frequency ω  is 
comprised in the observed signal ( )f t . The greater the value of a 

ω( )F , frequency ω  considerably contributes in the spectrum of 
observed signal ( )f t .

However, in real applications non-stationary signals, 
whether periodical or non-periodical, are the most common 
signals obtained from measurements and systems. It is well 
known fact (Strang and Nquyen, 1997; Antoniou, 2006) that FT is 
not appropriate tool for analyzing non-stationary signals since it 
loses information about time domain. Therefore, new transforms, 
which compute time and frequency domain at the same time, 
are proposed. 

Historically, Short Time Fourier Transform (STFT) or 
Windowed Fourier Transform (WFT) has been the first linear time-
frequency transform proposed (Wickerhauser, 1994; Strang and 
Nquyen, 1997). It is defined by:

[ ]ω ωτ ω τ −= ⋅ − ⋅∫( , ) ( ) ( ) j t
f

t

STFT f t W t e dt  (2)

where a STFT of a signal ( )f t  is computed for each window 
centred at a τ=t , at ω ω= 0  frequency, which is called localized 
spectrum. ( )A W t τ⋅ −  is referred to as windowing function or 
analysis window. An expression ω− j te  is referred as FT kernel. 
STFT segments analyzed signal into narrow time intervals, which 
are narrow enough to be considered stationary on the interval. 
After that Fourier Transform is applied on each segment, (Gabor, 
1946; Polikar, 2002). 

In order to depict basis functions of time-frequency 
transform a time-frequency plane is proposed (Herley at. al., 
1993) which is also called tiling or time-frequency tiling. The 
time-frequency plane of a particular basis function designates 
the region in the plane which contains most of that function’s 
energy, which is shown in Figure 1.

In a time-frequency plane, segments of the signal ( )f t  have 
a time spread, denoted as ∆t ,

+∞

−∞

∆ = ⋅∫
22 ( )t t f t dt  (3)

and frequency spread, denoted ω∆ ,

ω ω ω ω
+∞

−∞

∆ = ⋅∫
22 ( )F d  (4)

Then, the well-known uncertainty principle, i.e. Heisenberg 
principle (Wichmann, 1988), imposes the following lower bound 
on the product of time and frequency spreads:

πω∆ ⋅∆ ≥2 2

2t  (5)

Figure 1a shows time-frequency tiling for Fourier Transform. 
Since sine waves which are basis function for FT, have infinite 
compact support in time axis and ideal frequency resolution 
in frequency axis. Therefore horizontal strips represent time-
frequency tiling. Figure 1b shows time-frequency tiling for Short 
Time Fourier Transform. Due to the existence of window function, 

τ−( )W t , there is a compact support in time axis and in frequency 
axis, therefore time-frequency tiling is presented with squares. In 
order to extract some features from the analyzed signal, some 
applications require an adaptable window function, τ−( )W t , for 
which STFT is not suitable. In order to overcome aforementioned 
problem, a Wavelet Transform is proposed (Daubechies, 1992). It 
can be defined as follows. 

Definition 2.1. Let 2( ) ( )t L Rψ ∈  be the wavelet in the time 
domain and ωΨ( )  the same wavelet in the frequency domain. If 
and only if exists the integral:

ψ

ψ
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a)    b)       c)

Figure 1. 
Tilling of the time-frequency plane for:
a) FT, b) STFT, c) wavelets.
Source: authors.
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integral (6) is time consuming at best, or even impossible. In 
order to overcome aforementioned problem a new transform is 
proposed, Discrete Wavelet Transform (DWT). 

DWT overcomes problem of computing CWT coefficients, 
and it is suitable in fast computer algorithms. Moreover, since 
DWT algorithm converges rapidly, it is suitable for real time 
applications.

the following rules apply:

1° ψ ω=Ψ = =∫ ( ) ( 0) 0t dt
2° Translated (which is presented with parameter b) and 

scaled (which is presented with parameter a) function of ψ ( )t   
 
is described as ψ ψ − = ⋅  

 
,

1
( )a b

t b
t

aa
 where a, ∈b R  and 

 
≠ 0a . Function ψ ( )t  is called mother wavelet, and ψ − 

 
 

t b
a

 is  
 
dilated version of mother wavelet at given scale a. In practical 
applications, scale parameter is always ≤1a .

3° Normalization rules apply: ψ ψ=, ( ) ( )a b t t  and
4° Then the CWT satisfies the sufficient and necessary 

conditions and it is called Continuous Wavelet Transform (CWT) 
(Kingsbury and Magarey, 1997).

Wavelets ψ ( )t  can be considered as band pass filters 
(Vetterli and Kovačević, 1995; Rioul and Vetterli, 1991).

Figure 1c shows time-frequency tiling for Continuous 
Wavelet Transform. Since wavelets are compactly supported in 
both axes, an adaptable window exists in time-frequency plane. 
At high frequencies there is good localization in time, and at 
low frequencies there is good localization in frequency (Mallat, 
1999). It has to be pointed out that the area of time-frequency 
window is always constant so Heisenberg’s uncertainty principle 
is preserved.

In order to use Continuous Wavelet Transform with 
computer and in order to ensure convergence of CWT algorithm, 
sampling of coefficients is needed (Kingsbury and Magarey, 
1997). An algorithm obtained by sampling coefficients of CWT 
transform is known as Discretized Continuous Wavelet Transform 
(Christopher and Walnut, 2006). 

If the wavelet equation ψ ψ − = ⋅  
 

,

1
( )a b

t b
t

aa
 is 

 
discretized by choosing coefficients of the scale, a, and the 
translation, b, to form a dyadic pair, (Vetterli and Kovačević, 1995), 
a discretized version of wavelet equation is obtained:

ψ ψ− −= ⋅ ⋅ −2 2
, ( ) 2 (2 )

m m

m n t t n  (7)

Then eq. (6) becomes:
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which is known as Discretized Continuous Wavelet Transform. 
It is well known that in practical applications, function f(t), from 
Eq. (6), cannot be described analytically, therefore solving an 

Figure 2.
Wavelet decomposition of the signal (Misiti et al, 1997).
Source: authors.
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Historically, two groups of authors, in late 20th Century, 
proposed techniques for computing DWT coefficients. First group 
of authors (Vetterli and Gall, 1989) proposed Multiresolution 
Signal Analysis (MRA) technique or pyramidal algorithm. Second 
group (Crochiere et al., 1975; Crochiere and Sambur, 1977) 
proposed subband coding algorithm. Pyramidal algorithm 
is especially suitable and widely used in image processing 
applications (Mallat, 2009). Relationship between MRA and 
wavelet analysis are investigated and presented by Mallat (Mallat, 
2009) and Daubechies (Daubechies, 1992).

Foundations of Discrete Wavelet Transform are based 
on Multiresolution Analysis and Filter Bank Theory (Strang and 
Nquyen, 1997).

A subband coding algorithm is the fast algorithm that 
computes discrete wavelet coefficients, and it is based on filter 
banks.

In order to implement filter bank theory with MRA 
introduction of a scaling function,φ( )t , is proposed (Strang and 
Nquyen, 1997). Scaling function,φ( )t , is defined as follows:

φ φ
=

= ⋅ ⋅ −∑
0

( ) 2 ( ) (2 )
N

k

t h n t n  (9)

where a h (n) are coefficients of a low pass half band filter. 
Equation (9) is known as dilation equation (Vetterli and Kovačić, 
1995). Relationship between wavelet equation and FB theory is 
given with the following equation:

ψ φ
=

= ⋅ ⋅ −∑
0

( ) 2 ( ) (2 )
N

k

t d n t n
 (10)

where  a d (n) is coefficients of a high pass half band filter. Equation 
(10) is known as wavelet equation (Vetterli and Kovačić, 1995). 

Figure 1 shows decomposition of a signal, S, at three 
levels, applying subband coding algorithm (Misiti et al., 
1997). After a  signal S is passed through the filter bank, which 
consists of two filters, half band low pass filter and half band 
high pass filter, and then applying downsampling procedure, a 
coefficients of approximation, cA1, and a coefficients of details, 
cD1, are obtained, at the first level of decomposition. It has to 
be pointed out that with applying aforementioned procedure, 
coefficients cA1 and cD2 are halved with respect of total 
number of coefficients of analyzed signal S. At the second level 
of decomposition, approximation coefficients cA1, are passed 
through filter bank and then downsampled, which produces 
approximation and details coefficients, cA2 and cD2. cA2 and 
cD2 coefficients contain exactly half of the total number of cA1. 
At the last level of decomposition, cA1 coefficients are passed 
through filter bank and then downsampled, which produces cA3 
and cD3 coefficients at the third level. As previously, coefficients 
cA3 and cD3 contain half of the total number of cA2 coefficients. 
Wavelet decomposition algorithm is also known as logarithmic 
signal decomposition algorithm (Christopher and Walnut, 2006).

Described procedure has one potential drawback, in order 
to be able to assemble algorithm, you need to have an extensive 
knowledge about Fourier analysis and filter bank theory, since 
all programming is required to be done in frequency domain. 
In order to avoid frequency domain, Wim Sweldens proposed 
Second Generation Wavelet, SGW (Sweldens, 1998). His algorithm 

a)       b)

Figure 3.
Edge detection by: a) DWT,  b) dual-tree CWT.
Source: authors.
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is programmed entirely in time domain and is known as lifting 
scheme (Jansen and Oonincx, 2005). 

DWT exhibits four main flaws: oscillations, shift variance, 
aliasing and lack of directionality which are especially emphasized 
in image processing. It is well known that wavelet functions 
have zeroed mean. Therefore, the shape of the wavelet function 
is oscillating and wavelet coefficients can gain either positive 
or negative value. By applying the DWT results in weak edge 
definitions of the observed signal, and smear edge effect could 
be produced, in discontinuity localization. Figure 3 illustrates the 
edge detection by applying DWT and CWT transform in the same 
image. Figure 3a shows position of DWT wavelet on the edge 
of an image. Since wavelet has zeroed mean it oscillates on the 
edge, and results in smear edge effect which is presented in the 
analysis image. Figure 3b shows position of CWT wavelet on the 
edge of an image. Since the coefficients of CWT are only positive, 
edges of the image are more emphasized.

Shift variance presents the problem in interpretation of the 
signal since it greatly perturbs the wavelet coefficient oscillation 
pattern around singularities. Shift variance also complicates 
wavelet-domain processing since algorithms must be made 
capable of coping with wide range of possible wavelet coefficient 
patterns caused by shifted singularities (Selesnick et al., 2005).

When DWT transform is applied, at each level of signal 
decomposition, coefficients are computed by applying non-ideal 
low-pass and high-pass filters and then they are downsampled, 
which results in substantial aliasing. Since in real application 
some of the thresholding, filtering or quantization follows, it 
is impossible to obtain perfect reconstruction, which leads to 
artefacts in the reconstructed signal. Lack of directionality is also 
presented in higher dimensions. While Fourier bases functions 
are highly directional plane waves, a wavelet function lacks 
directionality. Non-directionality presents a problem in advance 
image processing and analysis applications, such as finding 
edges and ridges. It has to be pointed out that Fourier basis does 
not suffer from the same problems as wavelets.

To overcome mentioned DWT problems, and with Fourier 
transform as guidance, a complex wavelet are proposed 
(Selesnick et al., 2005), denoted ψ ( )c t :

ψ ψ ψ= + +( ) ( ) ( )c r it t j t  (11)

where a ψ ( )r t  is an even function, a ψ ( )i t  an odd function. 
A ψ ( )r t  and a ψ ( )i t  are phase shifted by 90° and make so 
called Hilbert transformation pair. The necessary condition is 
that a ψ ( )c t  is an analytical function. It can be shown that the 
large signal magnitudes correspond with the existence of the 
discontinuity in the analyzed signal and sudden phase changes 
correspond with the position of the discontinuity.

Complex wavelets are proposed in order to comply with 
more and more demanding applications. Complex Wavelet 

Transform (CWT) is built on the DWT basis (Selesnick et al., 
2005). First papers which deal with CWT were published in 
1995. (Gagnon, Lina and Goulard, 1995; Lina and Gagnon, 1995). 
Algorithm for CWT calculation is introduced in 1997 (Kingsbury 
and Magarey, 1997; Kingsbury, 1998), and it is known as Dual-
Tree Complex Wavelet Transform algorithm. 

CWT is primarily used in image processing applications, 
radar, speech, music, and multidimensional signals applications.

Wavelets are also widely used in navy coding of the secret 
data. They are also used in coding the video information in 
Internet transmission standards, video coding, digital imaging, 
etc. Due to increasing use of communication and multimedia in 
modern ships, all the areas of application can be found in various 
ships.

 
2.1. Multidimensional wavelet transform

All transforms mentioned in previous section are 
one-dimensional. In order to implement transforms for 
multidimensional signals, such as images, one must extend one-
dimensional theory to multidimensional case. This generalization 
is not always as simple as it may seem. Implementation of the 
DWT to multidimensional case requires separable wavelet bases 
in all dimensions.

In wavelet theory, it is usual to operate with time and 
frequency. However, physical interpretation can be different. 
The axis which denotes time can be replaced with some other 
axis. The frequency axis can also be replaced with the other 
axis. The mathematical properties of the transform remain 
the same. In image analysis, meanings of the axis are colour, 
number of pixels and coordinates of the pixel with denoted 
colour. Multidimensional transform involves causality problems. 
Therefore, a trick is used: one-dimensional algorithm is extended 
to more general case by separable approach and use of tensors.

Application of DWT to the image implies processing of rows 
and columns separately. Firstly, rows are filtered by LP and HP 
filters, then downsampling is performed. After that, the same is 
performed with columns. This process is shown in Figure 4. Final 
results are coefficients of two-dimensional wavelet transform. An 
Ak+1 is an approximation obtained by applying low pass filtering 
of both the rows and columns, i.e. LL output. Combinations of 
low and high and high and low filtering result in coefficients of 
details, i.e. LH and HL coefficients, which are known as horizontal 
and vertical coefficients. Finally, if both rows and columns are 
filtered with HP filter, then diagonal details are obtained.

One level of the reconstruction can be described with 
equation:
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Figure 4.
Wavelet analysis of the image: a) scheme (Polikar, 2002), b) an example.
Source: authors.
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where a φ  is the scaling function and a ψ  the wavelet function.
Nowadays applications operate mostly with video streams 

or images. Due to increased need for image processing algorithms, 
novel transforms are mostly used in multidimensional case.

3. NOVEL WAVELET-INSPIRED TRANSFORMS

Wavelets have exhibited a huge success in one-dimensional 
problems of signal processing and analysis. Furthermore, 
wavelets have a great success in image compression tasks, for 
example as in FBI application for fingertip database storage. In 
images consisting domains of smoothly varying grey values, 
separated by smooth boundaries, DWT exhibits problems that 
are visible in the form of compression artefacts. The problem 
is visible in the form of compression artefacts. Tensor-product 
construction (used in 2D-WT) is not flexible enough, causing 
the inability to repeat results obtained in 1D case (Führ et al., 
2006). In order to further improve and enhance analysis, different 
transforms are proposed. 

The phenomena of interest occur often along curves and 
sheets. The examples are the edges in the image. However, 
wavelets are suited for dealing with e.g. singularities, but there 
are ill-suited for detecting and dealing with intermediate 
dimensional structures.

3.1. Bandelets
Bandelets are constructed from an orthonormal basis that 

is adapted to geometric boundaries (Pennec and Mallat, 2005). 
Bandelets can be constructed and regarded as a warped wavelet 
basis. They are used to transform smooth functions on smoothly 
bounded domains. Since many other transforms utilize wavelets 
as well, they are called wavelet-inspired novel transforms. 
Contourlets and curvelets take account of geometric structure, 
but they utilize wavelets as well (Peyre et al., 2007). All novel 
transforms start with wavelet basis. The point is in changing the 
coordinate system and/or rotating the basis.

Proposition 3.1. Bandeletization of wavelet coefficients 
using an Alpert transform defines a set of bandelet coefficients 
if and only if a vector corresponding to a sampling of a function 
with an anisotropic regularity is well approximated with a few 
vectors from the Alpert basis. These coefficients can be written 
as inner products 

, ,, k
j nf b  of the original image f with bandlet 

functions that are linear combinations of wavelet functions:

[ ]ψ=∑
 , , , ,( ) ( )k k

j n n j p
p

b x a p x  (13)

where an [ ],l na p  is the coefficient of the Alpert transform.

3.2. Curvelet transform
The curvelet transform is a multiscale pyramid with many 

directions and positions at each length scale, and needle-
shaped elements at fine scales (Candés et al., 2006). Scaling 
part of the curvelets obey a parabolic law. Namely, at scale −2 j

, each element has an envelope which is aligned along a ridge of 
length − /22 j  and width −2 j .  Curvelets provide optimally sparse 
representation of objects with edges or wave propagators. There 
also have micro local features that help in reconstruction of 
severely ill-posed problems. 

Definition 3.1. (Candés et al., 2006) Let = 1 2( , )x x x  be 
random variable. Curvelet is defined at scale −2 j  orientation θ1  
and position ( )θ

− − −= ⋅ ⋅( , ) 1 /2
1 22 , 2j l j j

k lx R k k  by:

( )( )θϕ ϕ= − 



( , )
, , ( ) j

j k l j kx R x x  (14)

where a θR  is the rotation by θ  radians and it is mathematically 
Givens rotation (Golub et al., 1996):

θ

θ θ
θ θ

 
=  − 

cos sin
sin cos

R  (15)

The most important properties of the curvelet transform are 
(Candés et al., 2006): tight frames, parabolic scaling, oscillatory 

Figure 5.
Curvelet induced tilling of the frequency plane (Candés 
et al, 2006).
Source: authors.

~2j/2

~2j
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behaviour and vanishing moments.
The polar dyadic parabolic partition of the frequency plane 

is the bases of the curvelets construction. If different tilling is 
used, other transforms are obtained. For example (Candés et al., 
2006):

a) A directional wavelet transform is obtained if we divide 
the corona into a constant number regardless of scale. 

b) A ridgelet transform is obtained by subdividing each 
dyadic corona into C · 2j angles. 

c) A Gabor analysis is obtained if we substitute coronae 
with fixed width for dyadic coronae.

Furthermore, an adaptive partitioning of the frequency 
plane can be created, which best matches the features of the 
analyzed signal. This is the construction of so called „ridgelet 
packets“.

3.3. Contourlets
The contourlet transform is a geometrical image based 

transform. In this transform, the Laplacian Pyramid is firstly 
used to capture the point discontinuities, then it is followed by 
a Directional Filter Bank to link point discontinuities into linear 
structures. The Laplacian Pyramid is used to decompose an 
image into a number of radial subbands. The Directional Filter 
Bank is used to decompose each radial subband into a number 
of directional subbands (Anaraki et al., 2007).

3.4. Shapelets, Ridgelets, Edgelets and other transforms
Proposition 3.2. The shapelet decomposition enables 

an approximation calculation of the 2D object by a finite series 
(Melchior et al., 2007):

β
+ =

= −∑  

  

1 2 max

1 2,

( ) ( ; )
n n n

n n c
n n

I x I B x x  (16)

where a = 1 2( , )x x x , a =


1 2( , )n n n , and the shapelets basis 
function is expressed by (Refregier, 2003):

( ) ( )β β φ β φ β− − −= 1 1 1
1 1 2 2( ; )n n nB x x x  (17)

The basis is related to the 1D Gauss-Hermite polynomials 
with:

φ π
− − =  

20,50,5 0,5( ) 2 ! ( )n x
n nx n H x e  (18)

where a Hn (x) is a Hermite polynomial of an order n. 
The wavelet-inspired transforms use the wavelet basis 

that is a dimensional generalization of the wavelet transform 
designed to represent images at different scales and different 
angles.  The ridgelet transform uses the Finite Radon Transform 
(FRAT) as a basic building block.  

Wedgelets were proposed in 1999 (Donoho, 1999; 
Donoho et al., 1999). The purpose of proposed transform was 

approximation of the piecewise constant images with smooth 
boundaries.

Proposition 3.3. Let Qj be the set of dyadic squares of size 
−2 j  expressed by:

{ }− − − −   = + × +    2 : 2 ( 1) 2 : 2 ( 1)j j j j
jQ k k  (19)

with ≤ ≤0 , 2 jk l . The set is the union:

∞
== 0j jQ Q  (20)

Dyadic portion of the image is given by the tilling Q defined 
in the domain [0, 1]2 of dyadic squares of arbitrary size. If Q is 
defined as above, a wedgelet tilling is obtained by splitting each 
element ∈q Q  into at most two wedges along a suitable straight 
line. 

An edgelet is a short segment of line or curve (Wu and 
Nevatia, 2005).

Proposition 3.4. The affinity between the edgelet and the 
image I at location w can be calculated by the expression:

=

= + +∑
1

1
( ) ( ) ( ),

k
I I E

i i i
i

S w M u w n u w n
k

where { } =1

k
i i

u denote the location of points in the edgelet, { }
=1

kE
I i

n  
normal vectors at those points, a k the length of the edgelet, a 
I the input image, which have M(p) as edge intensity and n(p) 
normal vector at location p of the image I.

Note: Since edge intensity and normal vector are unknown, 
it is impossible to solve proposition 3.4. Therefore, the mentioned 
unknowns must be calculated by one of the edge detectors. In 
(Wu and Nevatia, 2005) the problem is solved by Sobel kernel 
of size 3x3. However, we submit that Canny or some wavelet 
detector can produce better results. If same wavelets are used to 
generate an edgelet and an edge detector, time of execution can 
be reduced.

4. APPLYING WAVELET BASED TIME FREQUENCY 
TECHNIQUES ON PORT SURVEILLANCE VIDEO STREAM 
EXAMPLE

Image processing and analysis play an increasing role 
in the security of ports due to increasing threats in the marine 
transport. Therefore, example of the image as the signal is taken 
deliberately. The chosen image shows the high traffic of small 
vessels, which can be the potential problem. Camera can detect 
suspicious movement, i.e. terrorist attack or fire aboard.

Figure 6 shows an arbitrarily chosen image from the port 
surveillance camera. It is the JPG file of the size 2592x1944. The 
colour space is RGB. It is analyzed by:
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Figure 6.
The original arbitrarily chosen image from the port surveillance camera.
Source: authors.

Figure 7.
Wavelet decomposition of arbitrarily chosen image 
obtained by the port surveillance camera.
Source: authors.

Figure 8.
Conturelet coefficients at two levels of decomposition.
Source: authors.

Figure 9.
Contourlet coefficients at three levels of decomposition.
Source: authors.
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- DWT
- contourlet and
- curvelet transform.

Figure 7 shows an example of the wavelet decomposition 
at the first level.  The upper left part of the image shows 
approximation coefficients. Horizontal details are shown in upper 
right part of the image.  Due to small values of the coefficients, 
it would appear black. To be visible, we multiplied it by factor 
8 in comparison to the approximation coefficients. The lower 
left part of the image shows vertical details and lower right 
diagonal details. All details are multiplied by 8 to be visible. It 
can be observed that the wavelet approximation takes all the 
energy contained in the image signal (the brightest image). The 
details exhibit chaotic behaviour at the sea level, and regular 
smoothness at the dock.

The wavelet produced coefficients are too scattered and 
do not show the direction of possible movement. Moreover, the 
wavelet coefficients do not emphasize the motion of any kind.

It can be calculated that the size of the sum of DWT 
coefficients and original image are the same. Therefore, any gains 
can be obtained only by reducing the coefficients by thresholding 

Figure 10. 
Curvelet transform example. 
Source: authors.
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or the exclusion of the coefficients which are redundant.
Figures 8 and 9 show the results of the contourlet 

decomposition at two and three levels. The input image is shown 
in Figure 6. It can be seen that contourlet transform emphasizes 
the sharp edges.

However, the grain structure of the image prevents higher 
vision applications to segment the image correctly. In favour of 
the contourlets, it should be noted that the example is arbitrary 
in choosing contourlet as well. It is possible that other contourlet 
would produce better results.

Figure 10 shows the analysis of the Figure 6 by applying 
Fast Discrete Curvelet Transform via wedge wrapping. Curvelets 
can be real or complex-valued. In the presented example, the 
complex-valued curvelets are chosen. Regarding the software 
application, possibilities for the coefficients at the finest level are 
curvelets and wavelets. Curvelets are selected as the example 
shown in the image. 

Upper right image is the curvelet approximation of the 
Figure 6. Note that the 8 details (by different angle of curvelet 
basis) should look black. They are multiplied by 2048 times in 
order to be visible by the human eyes in offprint. 

It can be observed that the size of the details is rotating 
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Figure 11.
Absolute difference of the details.
Source: authors.

and that approximation has different size. It is the opposite 
to the wavelet transforms, which all have the same sizes (both 
approximation and details).

Figure 11 shows the absolute difference of the details 
multiplied in order to be visible.

5. CONCLUSIONS

The cutting-edge mathematical tools for signal processing 
and analysis can be divided into two groups: 
- adaptive geometry-based tools such as wedgelets and related 
constructions and
- directional frames, such as curvelets or ridgelets, to name but  
a few.

Depending on application, a researcher has to be able to 
choose appropriate wavelet based transform algorithm.

All presented techniques, however advanced, are not 
applicable in every instance. Lot of care has to be taken in order 
to choose the right algorithm. Some techniques are better suited 
for the signal processing (such as DWT) and some for the signal 
analysis (such as CWT). DWT and other fast transforms are more 
suited for the signal processing, because of the reductions in data 
necessary for the execution, which is especially important in real-
time signal processing applications. On the other hand, CWT is 
redundant, which leaves a lot of data for analysis at i.e. higher 
vision applications.

The presented example shows that all mentioned 
transforms could have problems in segmenting the motion in a 
presence of larger waves.
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