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The paper deals with sea wave modelling based on available 
data acquired from a satellite-calibrated numerical model. The 
idea is to use an artificial neural network, as a flexible tool capable 
of modelling nonlinear processes, for significant wave height 
(SWH) modelling at a single point in the Adriatic Sea. The focus 
of the paper was not to develop a new type of ANN, but rather 
to use it as a modelling tool and identify the most significant 
input variables for SWH modelling in the Adriatic Sea, among 
the available data. Linear and nonlinear regression models were 
also developed for purposes of comparison of neural network 
performances with those of traditional data modelling methods. 
A total of 22 years of data were used - 20 years of data with a 
6 h sampling step time, i.e. 30684 data samples were used to 
calibrate the models, while 2 years of data, i.e. 2920 data samples 
were used to test the models’ performances. Simulation results 
proved the ability of an artificial neural network to model SWH 
with high accuracy based on available data. Furthermore, the 
artificial neural network model proved to be more accurate than 
traditional statistical models, especially when multiple input 
variables were used.   
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1. INTRODUCTION

Sea wave modelling is challenging due to its complexity, 
since a variety of parameters influence the mathematical 
description of the sea surface. In wave modelling in the Adriatic 
Sea, Tonko Tabain defined the Tabain spectrum of waves in the 
Adriatic Sea (Tabain, 1997). Computer development enabled 
numerical modelling and the application of numerical tools such 
as SWAN (Ris et al., 1999) to play a significant role in the sea wave 
modelling process. However, the use of numerical models might 
be limited by their complexity, high computational requirements 
and the need for accurate bathymetric data (Peres et al., 2015). 

The availability of measurements and significant data bases 
made data-based modelling a viable option. Regression analysis, 
briefly described in section 3.1 of the paper, is a common tool in 
modelling systems based on available data. However, it requires 
deciding on which variables should be included in the model, 
the form such variables should take and, most importantly, the 
assumption of the functional relationship between dependent 
(output) and independent (input) variables of the system. These 
issues could be avoided by using an alternative, more flexible 
data-based modelling tool, such as artificial neural networks. 

Artificial neural networks (ANNs), briefly presented in 
section 3.2 of this paper, have the ability to approximate nonlinear 
functions, which makes them an interesting tool for nonlinear 
system modelling. In essence, ANNs represent an approach 
similar to regression analysis, a method using data collected 
from a process to calculate model parameters. While regression 
analysis requires the definition of a strict mathematical form of 
a model, a neural network has a more flexible structure allowing 
it to adapt to the data. Therefore, while expected to yield similar 
results in simple cases, neural networks are anticipated to 
perform better in more complex cases where multiple variables 
influence the output variable.  
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ANNs have already been used in ocean engineering mostly 
to model and/or predict significant wave height, as in (Zamani 
et al., 2009; Peres et al., 2015), peak wave period  and, recently, 
wave energy flux, as reported in (Haddadpour et al., 2014). Input 
variables for sea wave modelling are usually wind speed and 
wind direction, with the previous values of the output variable 
also used as inputs. In paper (Peres et al., 2015), ANN was used 
to model significant wave height based on wind speed data, 
and the model was improved by expanding the input data set 
with more wind input points in the wave generation area. These 
predictions were used to fill-in the gaps in the significant wave 
height data series for three points in the Mediterranean Sea. In 
paper (Zamani et al., 2009), Kalman-filtering is applied to the ANN 
output to improve the network’s prediction ability.  

This paper examines the ability to apply feed-forward 
artificial neural network (ANN), known as multi-layer perceptron 
(MLP), to model significant wave height (SWH) at a single point in 
the Adriatic Sea, while examining the influence of different input 
variables. 

Available data are presented in section 4.1 of this paper. 
In section 4.2, the results of correlation analysis are presented 
to pre-examine the influence of potential input variables on the 
output variable. In section 4.3, model-based experiments, used 
to determine the set of optimum input variables, are presented. 
For every ANN model, an appropriate regression model was 
also formed, and the comparison was made with the results 
presented and analysed in section 5. The conclusions, based on 
the comparison of neural and regression model performances 
with the actual values of the output variable, are presented in 
section 6.

2. SEA WAVE MODELLING

Wave modelling has a significant role in fields such 
as renewable energy planning, coastal engineering, naval 
architecture and maritime transportation. Sea surface waves 
are simultaneously an important energy resource that can be 
exploited by utilizing wave energy conversion devices (WEC) 
to generate electricity, and a threat to offshore installations and 
seagoing vessels owing to extreme loads capable of causing 
sudden structural collapses or “normal operation” long-term 
stress which can lead to fatigue damage. Detailed metocean 
studies facilitate the development of improved and safer designs 
by optimizing efficiency and minimizing risk. 

Several methods can be applied to wave modelling, ranging 
from empirical to most sophisticated third-generation numerical 
models. Some examples of wave modelling approaches are as 
follows:
•	 modelling by formulated wave spectra function, e.g. Tabain 
spectrum, JONSWAP spectrum;
•	 numerical modelling with specialized software, e.g. SWAN, 

WAM, WAVEWATCH III (Ortiz-Royero and Mercado-Irizarry, 2008);
•	 modelling with wide-application tools, e.g. artificial neural 
networks.

Modelling with wave spectra function and specialized 
software are both well-known procedures for performing 
calculations in maritime transportation and naval architecture 
tasks in the Adriatic Sea (Katalinic et al., 2015). The use of 
numerical models might be limited by their complexity, 
high computational requirements and the need for accurate 
bathymetric data (Peres et al., 2015). The main goal of the present 
paper is to verify the application of a wide-range application tool, 
such as neural network, in wave modelling in the Adriatic Sea by 
examining available input variables for the case study.

3. MODELLING METHODS

As explained in (Rawlings et al., 2001), modelling refers 
to the development of mathematical expressions describing 
the behavior of a variable of interest. This variable is called the 
dependent variable and is usually denoted by y. Other variables 
which are thought to provide information on the behavior of the 
dependent variable are incorporated into the model as predictors 
or explanatory variables. These variables are called independent 
variables, and can be denoted by x, with additional notation as 
needed to identify different independent variables. In addition 
to dependent and independent variables, all models likewise 
involve unknown constants, called parameters, which control 
the behavior of the model. Since the modelling method should 
provide a way to determine the values of these parameters, the 
models’ response should fit the available data. The basic idea of 
this paper is to use an artificial neural network as a modelling 
method in a case study and compare it with a traditional data-
based modelling method, i.e. regression analysis.

3.1. Regression Analysis

The simplest linear model involves only one independent 
variable and states that the dependent variable changes at a 
constant rate as the value of the independent variable increases 
or decreases. Thus, the functional relationship between yi and xi 
is the equation of a straight line (Rawlings et al., 2001), described 
with (1) for the univariate case.

(1)yi
  = α1  xi + α0

The subscript i indicates the particular observational unit, the 
yi and xi pair of observations. The xi stands for n observations 
of the independent variable, while yi denotes the observations 
of the dependent variable. Therefore, a simple linear model 
has two parameters, α0 and α1, to be estimated from the data. 
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If there was no random error in yi, any two data points could be 
used to obtain the values of the parameters. A random variation 
in a set of yi values causes each pair of observed data points to 
give different results. Therefore, a method is needed that will 
combine all the information from the data into a single solution 
considered to be the “best” by some criterion. The least squares 
estimation, explained in (Rawlings et al., 2001), is frequently used 
for this purpose.

Models sometimes explain the behavior of the dependent 
variable by k independent variables. In this case, the linear model 
can be extended, as described in (2), for the multivariate case, 
and the problem is called multiple regression analysis. In this 
case, there are k+1 parameters to be estimated, and the common 
least squares estimate can also be applied.

(2)yi
  = α0   +  α1 ∙ x1i+  α2 ∙ x2i +  L +  αk ∙ xki

(3)yi
  = fN   (   αk+1 , xki  ) 

More realistic and therefore more complex models use nonlinear 
relationships between the dependent variable and independent 
variables. The introduction of higher-degree polynomials, 
exponential and trigonometric functions increases the flexibility 
of the model. Generally, these models can be expressed with (3), 
where fN stands for a nonlinear function.

Regression analysis requires the determination of the functional 
form of the model, which could cause errors. However, these 
decisions could be avoided by using an alternative, more flexible 
data-based modelling tool such as artificial neural networks.

3.2. Artificial Neural Networks

ANNs represent a simplified mathematical model of the 
process occurring in the brain of living beings. ANN is an artificial 
structure consisting of a number of interconnected artificial 
neurons, resembling the biological neural network in terms of 
information processing and storage, as described in (Haykin, 
1999). Based on neuron type and their mutual connections, 
different ANNs have been developed over the last 50 years. So 
far, ANNs have been successfully applied to a large number of 
different computational problems such as pattern recognition, 
classification, function approximation, modelling and prediction. 

A static feed-forward ANN called Multi-Layer Perceptron 
(MLP) is probably the most commonly used network architecture 
in most applications, especially function approximation, i.e. 
modelling and prediction. As briefly described in (Matić et al., 
2015), MLP with m inputs, h hidden neurons and o output neurons, 

uses nonlinear sigmoidal activation functions in a hidden layer, 
which enables it to approximate nonlinear functions, i.e. model 
non-linear processes. Although the optimum number of layers 
was often the subject of research, two-layer structure was proven 
to be sufficient to approximate any practical function, given 
enough neurons in the hidden layer (Cybenko, 1989). Therefore, a 
two-layer MLP, known as universal approximator, was used in this 
research to form a neural model of significant wave height (SWH). 

For a model structure to be defined, the number of inputs 
(Ni), the number of hidden neurons (Nh) and the number of 
output neurons (No) have to be determined. The determination 
of input variables is case-dependent, and is therefore discussed 
in more detail in sections 4 and 5 of this paper. The number of 
output neurones is determined by the number of output variables 
and depends on the modelling goal, i.e. the model’s purpose. In 
this case, it is set to one neuron. Since the quality of the model is 
dependent upon the number of hidden neurons, it is inevitably a 
subject of research in the model development process. 

Although defined by its structure, i.e. neuron number and 
type, ANN takes its final form only after the completion of the 
learning process. The procedure used to execute the learning 
process is called the learning (or training) algorithm. Its function 
is to modify network parameters in an orderly fashion to obtain 
the desired objective, i.e. minimize error between network 
output and the desired value. The basic algorithm developed 
for MLP network training is error backpropagation (EBP), which 
could be considered one of the most significant breakthroughs 
in the field of neural networks, as noted in (Matic et al., 2015). 
Although EBP algorithm is still widely used, many improvements 
have been made to the original algorithm to deal with the issue of 
its slow convergence. In this paper, a Levenberg-Marquardt (LM) 
algorithm, explained in (Hagan and Menhaj, 1994) and (Yu and 
Wilamowski, 2011), and Bayesian regularization (BR), explained 
in (Foresee and Hagan, 1997), were used to train the network. 
BR can be a useful tool for determining the sufficient number of 
hidden neurons, improving on the Levenberg-Marquardt (LM) 
algorithm, already proven to be the fastest and most appropriate 
algorithm for training networks, possibly containing hundreds 
of adjustable parameters (Beale et al., 2010). To determine the 
optimum number of hidden neurons, BR was used in addition to 
a set of experiments on training ANNs with varying numbers of 
hidden neurons. 

Artificial neural networks (ANNs) have been explained 
in detail in (Haykin, 1999), or (Beale et al., 2010) which is more 
focused on the application of ANNs as a modelling tool. Explicit 
examples of application in sea wave modelling can be found in 
references stated in the introduction. The intent of this paper was 
neither to develop a new type of ANN, nor improve an existing 
one, but rather to explore the possibility of application of ANN in 
Adriatic Sea wave modelling, i.e. significant wave height (SWH). 
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4. CASE STUDY – ADRIATIC SEA WAVE MODELLING

The available data were obtained from an environmental 
monitoring company, Fugro OCEANOR, to be used in the DATAS 
(Damaged Tanker in The Adriatic Sea) project funded by the 
Croatian Science Foundation. The data were collected by satellite 
mapping between January 1992 - January 2016, with the time 
step of 6 hours, at 40 points in the Adriatic Sea. The calculations in 
this paper pertain to data from a single point in the Adriatic Sea 
with the following coordinates:
•	 latitude	 42 N

Table 1.
Available data.

Table 2.
Correlation analysis for potential input variables for the chosen point in the Adriatic Sea.

Class Variable name Abbreviation Unit

01 Significant wave height SWH m

02 Mean wave direction MDIR ° (degrees) 

03 Peak period of 1d spectra PP1D s

04 Mean wave period MWP s

05 Significant height of wind waves SHWW m

06 Mean direction of wind waves MDIRW ° (degrees) 

07 Mean period of wind waves MPWW s

08 Sign. height of primary swell SHPS m

09 Mean direction of primary swell MDIRS ° (degrees)

10 Mean period of primary swell MPPS s

11 Wind speed  at 10 m height WSP m/s

12 Wind direction at 10 m height WDIR ° (degrees)

13 Wind time duration WTD h

14 Wind quadrant WQ [1-8]

•	 longitude	 17 E
The chosen point is located on the busy merchant ship 

route between Otrant (SE entrance into the Adriatic Sea) and NE 
Adriatic ports (Rijeka, Venice, Koper). All data were divided into 
12 classes of variables (Table 1, 1-12), the names, abbreviations 
and units of which are presented in Table 1. Additionally, the 
authors generated two more potential input variables from 
available data, namely wind time of duration (WTD) to account 
for past wind behaviour, and the wind quadrant (WQ) to simplify 
wind direction information (Table 1, 13-14).

4.1. Data Analysis

Data analysis is performed to examine the relations 
between potential input and output variables. Although 
physical processes are mostly non-linear, linear measures, such 
as correlation analysis, are often used due to their simplicity. 
Non-linear methods, such as Mutual Information (Zamani et al., 
2009), can also be used. However, these results are never taken 

unequivocally, i.e. the results of data analysis are considered to 
be merely an assumption, and should be verified by means of 
a model-based experiment. In this case, the correlation analysis 
was performed to examine the influence of potential input 
variables, thus providing an insight into the interdependence of 
input and output variables. Correlation analysis results presented 
in Table 2 are used to facilitate the selection of input variables. 

CC WSP WDIR WQ WTD SWHt-1

SWH 0.839392 -0.09057 -0.05716 0.171479 0.902132
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Table 3.
Experiment setup for optimum input variable identification.

Results from Table 2 suggest that SWHt is strongly influenced 
by WSPt and its own value from the preceding calculation step, 
SWHt-1. Therefore, WSPt and SWHt-1 are selected as the best 
potential inputs for the SWH model. These assumptions are 
validated by model-based experiments.

4.2. Model Formulation 

Data sets obtained from Fugro OCEANOR and the DATAS 
project were used in the modelling process. From the available 
22 years of data - 20 years of data were used to calibrate and 2 
years of data to test the models. Sample rate, i.e. time step, was 6 
hours, yielding 30683 samples for calibration and 2920 samples 
for model performance testing. Optimum input variables for 
modelling the current value of significant wave height (SWHt) 
were identified by examining a set of potential input variables 
through a number of experiments. Since correlation analysis 
suggested that WSPt and SWHt-1 were the best potential inputs 
for SWH modelling, experiments were performed as described in 
Table 3. 

i Formulation

1 SWHt = f (WSPt)

2 SWHt = f (WSPt, SWHt-1)

3 SWHt = f (SWHt-1)

Two models were formed for each experiment i Є [1, 3], a 
neural network model (NNMi), and a regression model (RMi). 
The number of hidden layer neurons for the neural models was 
determined by experiments, where the number of neurons was 
increased from 10 to 50 with the step size of 10. The BR algorithm 
was also used to optimize the number of network parameters. 
Since training outcome is dependent upon the initial values of 
network parameters (w), multi-start was applied to bring the 
solution closer to the global minimum. This means that each 
network structure with different initial values of w parameters is 
trained P times, with the highest-ranking network selected as the 
representative model. P = 10 was used as the optimum number of 
consecutive network trainings based on a recommendation from 
(de Vos and Rientjes, 2005). In the regression analysis, for every 
RMi, a number of polynomial functions were explored to obtain 
the optimum solution, found to be a simple quadratic function.   

4.3. Model Evaluation

Graphical and numerical methods can be used to evaluate 
a model’s performances. Graphical methods enable visual 
comparison of a model’s response to actual values, offering 
a simple first impression of the overall quality of the model. 
Numerical methods measure the exact quantity of deviation of 
a models’ response from the actual value by means of statistical 
measures of quality. 

Numerical evaluation of data-based modeling in the field 
of hydrology was analyzed by LeGates and McCabe (1999), with 
the results applicable to this case study as well. The authors of 
(LeGates and McCabe, 1999) proposed a set of different measures 
to evaluate the quality of the model, and recommended that the 
set include at least one relative and one absolute measure. In the 
paper (Gupta et al., 1999) the application of Persistence Index 
(PI) is also recommended. Therefore, the quality of a model is 
established by means of the following measures, absolute: root 
mean squared error (RMSE), mean absolute error (MAE); and 
relative: Nash-Sutchllife coefficient of efficiency (NSC, or CE), 
percent bias (PBIAS), RMSE to standard deviation ratio (RSR) and 
persistency index (PI). RMSE, MAE, CE, PBIAS, RSR and PI measures 
are defined with expressions (4) to (9), in the corresponding order.

(5)MAE =              | ds - ys |∑   

S

s=1S
1

(4)RMSE = √                ( ds - ys )
2∑   

S

s=1S
1

(6)CE = 1 - 
( ds - ys )

2∑   

S

s=1

( ds - d )2∑   

S

s=1

(7)PBIAS =                             ∙ 100 %
( ds - ys )∑   

S

s=1

( ds )∑   

S

s=1
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(8)
STDEV

RMSERSR =
( ds - ys )

2∑   

S

s=1

( ds - d )2∑   

S

s=1

√

(9)PI = 1 - 
( ds - ys )

2∑   

N

s=1

( ds - ds-1 )2∑   

N

s=1

RMSE, MAE and RSR values range from high (+∞) to 0, with 
lower values indicating lower errors. CE and PI values range 
from negative (-∞) to 1, where high positive values indicate a 
better fit. PBIAS measures the average propensity of the model 
for the calculation of output values (y) lower or higher than 
the measurements (d). The values of the criteria range from 0 
to ± 100 %, with lower values being indicative of better model 
performance. Positive values indicate a model’s bias toward 
underestimation, while negative values indicate bias toward 
overestimation. 

In (Gupta et al., 1999) a satisfactory model is defined as the 
one with positive values of the PI coefficient. In paper (Moriasi et 
al., 2007), model classification is performed based on the values 
of CE, RSR and PBIAS quality measures. The same classification is 
presented in Table 4 and used in this paper to evaluate a model’s 
performance.

Table 4.
Model classification based on CE, RSR and PBIAS values.

Table 5.
Numerical evaluation of the performance of models from experiments 1 to 3. 

Model quality CE RSR PBIAS

Very good (0.75, 1.00] [0.00, 0.50] < ±10%

Good (0.65, 0.75] (0.50, 0.60] [±10, ±15) %

Satisfactory (0.5, 0.65] (0.6, 0.70] [±15, ±25) %

Unsatisfactory ≤ 0.5 > 0.7 ≥ ±25 %

5. RESULTS AND DISCUSSION

The results of the numerical evaluation of neural and 
regression models for experiments 1 to 3 are shown in Table 5. 
Due to high CE values and relatively low values of RSR, RMSE and 
MAE measures, NNM1 and RM1 can both be noted to fairly model 
the system, with only the PI criterion measuring low negative 
value, indicating unsatisfactory model performances. Numerical 
evaluation of the models from experiment 2 is indicative of 
excellent model behaviour due to low RMSE, MAE, RSR and PBIAS 

values, and CE and PI measures yielding values close to 1. The 
NNM2 model can be noted to score slightly higher than RM2 by 
all numerical measures used. Numerical evaluation of the models 
from experiment 3 indicates satisfactory model behaviour by all 
measures used, with only PBIAS evaluating a NNM3 better than 
RM3. The overall comparison of the models’ performances from 
Table 5 indicates that NNM2 is the best model for representing 
SWH behaviour in the case study. 

Model
Absolute Relative

RMSE MAE PI CE PBIAS RSR

NNM1 0.293 0.203 -0.178 0.791 2.918 0.52

RM1 0.293 0.204 -0.179 0.79 2.937 0.52

NNM2 0.126 0.083 0.784 0.962 0.147 0.2

RM2 0.136 0.091 0.745 0.955 0.232 0.216

NNM3 0.264 0.18 0.044 0.83 0.93 0.459

RM3 0.264 0.18 0.043 0.83 1.148 0.458
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Models from experiments 1 and 3 tend to give best results 
if h = 10 neurons from the hidden layer are used. Models from 
experiment 2 tend to give best results if h = 20 neurons from the 
hidden layer are used. Optimum regression models are defined 
with expressions (10) to (12) for experiments 1 to 3, in the 
corresponding order, where y stands for SWH and x represents 
the WSP variable.

(10)yt = 0.0119 ∙ xt
2 

  + 0.0126 ∙ xt + 0.392

(11)
yt = - 0.0288 ∙ yt-1

 
  + 0.6556 ∙ yt-1 + 0.084 ∙ xt

2 

+ 0.0166 ∙ xt + 0.1197

2

(12)yt = - 0.0255 ∙ yt-1
 
  + 0.9726 ∙ yt-1 + 0.05462

The ordinate in Figures 1 to 3 represents significant wave 
height measured in meters, while abscissa represents time with a 
6-hour step. For clearer presentation of the graphical evaluation, 
responses in Figures 1 to 3 are magnified, showing only model 
behaviour for sample 2740 to 2820.

Figure 1.
Graphical comparison of model responses to actual SWH values from experiment 1.

Graphical evaluation of performances of models from 
experiment 1, presented in Figure 1, indicates consistent error in 
the range of low values of the SWH variable. Graphical evaluation 
also shows the model’s tendency to predict sudden variable 
changes, causing numerical measures to have a negative impact 
on model’s performances, although it is actually doing more 
than just modelling in some cases, it is predicting. This only 
underscores the importance of use of numerical and graphical 
evaluation in conjunction, to get a proper evaluation of models’ 
performances. 

Graphical evaluation of models’ performances from 
experiment 2, presented in Figure 2, shows excellent 
correspondence of models’ responses and actual data.

Graphical evaluation of models’ performances from 
experiment 3, presented in Figure 3, suggests that lag effect 
is a problem preventing both models (NNM3 and RM3) from 
modelling sudden changes of the SWH.

6. CONCLUSION

Based on the results presented in section 5 it can be 
concluded that artificial neural networks can be successfully 
applied to significant wave height modelling in the Adriatic Sea. 
The models from experiment 1, using only WSP to model SWH, 
although being slightly under-rated by statistical measures of 
performance, have manifested an interesting ability to predict 
sudden changes of the output variable. This conclusion should 
be exploited in terms of SWH prediction in further research. 
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Figure 2.
Graphical comparison of models’ responses to actual SWH values from experiment 2.

Figure 3.
Graphical comparison of model responses to actual SWH values from experiment 3.

In experiment 3, i.e. the case of SWHt-1 used as a single 
input variable, the issue of models’ responses lagging behind 
the actual SWH can be noted. This lag effect suggests the 
inability of the models to account for sudden changes of the 
output variable at the right time. The use of an adequate input 
variable, such as WSP, would announce the change and correct 
the error. Therefore, the best results are obtained when WSPt and 
SWHt-1 are used as inputs, as in experiment 2. In that case, NNM2 
produces slightly better results than RM2, as can be seen from the 
numerical evaluation of the models. 

Since the models performed equally in case of single input, 
and NNM performed better when two variables were used, 
neural network can be concluded to have certain advantages 
over regression in modelling complex processes where more 
input variables are expected to influence the output variable. 
Another advantage of a neural network is the simplicity of model 
formulation, which facilitates experimentation. As already noted, 
regression analysis requires the development of the optimum 
mathematical form, which is both time consuming and prone 
to errors. However, when neural network is used as a modelling 
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tool, the network learns the optimum function by itself, without 
any assistance from the model designer. 

The work presented in this paper is the first step in the 
modelling and prediction of the state of the Adriatic Sea based 
on available data. Further research should include modelling of 
other sea state variables for different points in the Adriatic Sea 
and prediction ability investigation, as well as prediction horizon 
determination. The model to be obtained by further research 
should provide reliable information for ship response modelling 
purposes, with the final goal of route optimization in heavy 
seas. That model should help build an efficient, simple, real-time 
decision making tool that could be used for navigation in bad 
weather in the Adriatic Sea, based on easily measurable data, i.e. 
wind speed and direction. 
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