
TRANSACTIONS ON MARITIME SCIENCE 205Trans. marit. sci. 2019; 02: 205-212

a. Center of Space Technology, Institute of Aviation, Warsaw, Poland

e-mail: cezary.szczepanski@ilot.edu.pl

b. Mechanical Power Faculty, Wroclaw University of Science and Technology,
Wroclaw, Poland

e-mail: marcin.ciopcia@pwr.edu.pl

The purpose of this paper is to propose a design and
development methodology in terms of robustness of unmanned
vehicle (UV) software development, which minimizes the risk
of software failure in both experimental and final solutions.
The most common dangers in UV software development were
determined, classified, and analyzed based on literature studies
and the authors’ own experience in software development and
analysis of open-source code. As a conclusion, “good practices”
and failure countermeasures are proposed.

How to Avoid Mistakes in Software
Development for Unmanned
Vehicles
Cezary Szczepańskia, Marcin Ciopciab

KEY WORDS
 ~ Unmanned vehicle
 ~ UV
 ~ UAV
 ~ Software development
 ~ Software robustness

1. PROBLEM IDENTIFICATION

Software for application in the unmanned vehicles (UV) is
usually developed not by professional Functional Safety (FuSa)
developers, but rather by people coming from other technical
backgrounds related to the currently developed unmanned
vehicles. One of the authors of this paper represents such an
example, and the other one has a formal educational background
in software development. The cases described here and their
analyses allowed the authors to formulate some conclusions and
directions on how to avoid mistakes in software development
for unmanned vehicles’ initial tests and how to make their
further development smoother. This paper will not cover FuSa
certification process guidance, such as a formal Hazard and Risk
Analysis (HARA), but rather contains good practices for persons
who e.g. want to test their new sensing or control algorithm safely.
The discovered roots of failure can in most cases be avoided by
using simple workflow rules and good programming practices.
They can be defined and then easily incorporated by developers
to increase robustness of the software and to eliminate or at least
to minimize the chance of the developed vehicle’s failure. The
design rules presented here increase operational safety in the
process of UV prototyping. Sharing them with less experienced
programmers will have a positive impact on the quality of the
final software. The awareness of risks related to UV software
may also guide senior developers/software architects to apply
the presented countermeasures in their projects, even at the
expense of increased costs, time, software licensing, and similar.

The authors utilized their expertise in aeronautics in general,
and in unmanned aerial vehicles’ (UAV) software development in
particular. Many of UAV software developers originate from open-This work is licensed under

doi: 10.7225/toms.v08.n02.005

206 Cezary Szczepański and Marcin Ciopcia: How to Avoid Mistakes in Software Development for Unmanned Vehicles

source projects. Applying the rules described below into these
projects will have a significant impact on the hobbyists’ work,
who will benefit from increased reliability of their constructions.
It may also be profitable for researchers, in whose case a smooth
integration of experimental modules will simplify the prototype
development process and increase the scientific progress of
knowledge on UVs. This paper transfers “good practices” in
software development into a compendium, which will help to
increase software quality in UV research.

The terms of software development for UAV applications
can be easily compared to the respective rules for manned
aircraft. The main factor to be taken into consideration during
the development of man piloted aviation software is the safety
of the aircraft operation. For a UAV, one can formulate that the
main factor is either a quick and cheap software development
if the standard, open-source software cannot be applied, or free
software available for that purpose to be adopted to the specific
requirements of the developed project of a new or modernized
UAV.

Software development on micro- and mini-class UAVs,
which are the most popular among the users being also software
developers, is not restricted by any standard. In contradiction
to software for full-size aircraft, developers are not limited by
certification requirements and standards, such as DO-178. From
the researchers’ point of view, this situation is highly beneficial as
the whole development process can be drastically shortened. The
lack of significant limitations enables them to use state-of-the-
art solutions in terms of languages, coding techniques, software
development tools, etc. The development of a new human-
crewed aircraft, even using modern tools and processes, often
takes more than ten years – mostly due to extensive certification
and development procedure requirements. In terms of modern
software development during such an extended period, almost
all modern solutions often became obsolete.

Let us consider part of the newest standard (relative to
20/04/2019) for aviation software development, DO-332, which
is a supplement to DO-178C and DO-278A. All these documents
were introduced in 2011. DO-332 provides evaluation and
acceptance criteria for Object-Oriented Programming (OOP)
dedicated to aviation. The idea of OOP began to develop in
the 1960s. The current “golden standard” for OOP embedded
programming – C++ language – has been introduced in 1983,
and nowadays compilers even support it for microcontrollers,
such as ARM Cortex. Since 2011, three major standard revisions,
C++11(ISO/IEC 14882:2011), C++14(ISO/IEC 14882:2014) and
C++17(ISO/IEC 14882:2017) were published, but still will soon be
replaced by already announced C++20.

As long as standards such as DO-178C do not forbid
modern software development techniques such as Test-Driven
Development (TDD) to be used alongside the formal, certified
ones, the accepted techniques and tools may still not cover

many useful features and capabilities of modern languages.
This situation makes mentioned small UAVs to be excellent
prototyping platforms for aviation software of the future.

Unfortunately, such lack of formal guidance in aviation
may cause major hazards. All the procedures related to aviation
software development are focused on safety. A small UAV may
not cause such danger as an airliner. Nonetheless, the failure of
onboard systems may still cause severe damages not only to the
platform itself but also to people and objects around it. That is
becoming even more important as the UAVs are being widely
used not only by amateurs, but also by professional operators for
many purposes, e.g. power grid screening, precision agriculture,
picture and footage of private and mass events, cargo deliveries
and many others. All the expanding areas of UAV applications
are either visual line of sight (VLOS) or beyond visual line of
sight (BVLOS) operations. Particularly the last mentioned type
of operation could be seriously impacted by immature and not
entirely safe software.

In the authors’ professional career we heard statements
such as “We crashed X prototypes – so our software is in an
advanced state”, or “Searching on an analytical solution, e.g.
PID, is the domain of scientists and not “real engineers” who
make money on their projects.” In order to understand what is
inherently wrong in such an approach, let us imagine that such
words came out of your car tire design engineer. Would you
entrust the life of your family in such a design attitude during a
highway vacation trip?

The main goal of this article is to show that even for
prototypes there is room for safety and robustness. Even when
full, formal HARA is not required, it is worth remembering
safety and some basic precautions leading to achieving it. We
summarize below with explanations and comments what in our
opinion are the most important ones. However, let us first remain
with the end to which simple bugs might lead.

2. BRIEF LESSONS FROM THE HISTORY

In aviation software development, it is always worth
remembering that even the smallest bug may cause a serious
hazard. Those situations even happened in the most rigorous
software development environments such as space missions or
healthcare devices. The following list will briefly introduce a few
examples which are considered the most tragic software failures
in the history of software development.

(1) Atomic Energy of Canada Limited Therac-25
One of the most tragic software failures happened in

Therac-25, produced by Atomic Energy of Canada Limited and
used in medical examining. Those x-ray machines caused the
death of at least six patients due to beta-radiation lethal overdose.
The device had two modes of operation: weak electron beam and

TRANSACTIONS ON MARITIME SCIENCE 207Trans. marit. sci. 2019; 02: 205-212

more powerful launcher design caused the value to overflow,
which triggered operand error. That small error combined with
unfortunate circumstances caused the catastrophic failure whose
cost was estimated to $7 billion.

Conclusion: Lack of integration testing on the “proven
in use” component cost $7 billion.

(4) the author’s experience
Such errors may also occur for small UAVs. They are

less expensive, but still may cause harmful situations for the
operators and the environment. One of them happened to one
of the authors during the research of the AHRS system for one
of the projects. In order to implement a new AHRS subsystem,
he had to prepare a new multirotor for flight. One of the steps of
the setup procedure was a pre-flight PID tuning on a harness. The
Ground Station (GS) software had managed all the regulators.
Unfortunately, one of the programmers delivered hardcoded
mode switch for experimental autonomous navigation system
into the central repository, not passing the information on it to the
other researchers. This small piece of code contained overwriting
of the main flight mode settings and caused misconfiguration
of PID controllers on the tuned vehicle. During a routine tune
procedure, the vehicle fell into uncontrolled oscillations, which
shortly led to an unexpected full-throttle command for one of
the engines. A brushless motor, with 1,000 KV RPM constant
at full speed combined with a 4s Li-Po battery and the 10-inch
propeller may cause severe injuries. Fortunately, in our case it left
only a code quality remainder in the form of a scar on one of the
author's hands.

Conclusion: A temporary solution and lack of proper
communication almost caused the author to lose his precious
fingers.

3. GOOD PRACTICES IN SOFTWARE DEVELOPMENT

Remembering the above described cases and taking into
consideration the UV software development conditions and
priorities, the authors tried to formulate in a possibly clear way
some advice for non-professional software developers. Also,
professionals can apply some suggestions for their projects’
performance.

(1) Write a developer-friendly code
Rule No. 1: Do not write software in a crypto style. Make it clear

for any developer, even for yourself.
A valid code means, in principle, the code understandable

to a machine. In order to make software development efficient,
it also has to be understandable to a human. Modern compilers
are very efficient in the optimization of assembly code. They are
often considered as even superior to an experienced assembly
programmer in terms of code performance.

x-rays scanning. The latter utilized a high-energy electron beam
which was converted to the x-ray radiation within safety limits by
a collimator and an ion chamber. Due to a faulty retraction of a
conversion module in an x-ray modem caused by the software,
patients were exposed to a high level of beta radiation, which
caused severe damage to their bodies.

From the software side, this failure was caused by many
factors and flaws in the design and implementation procedures.
Reports from the investigation (Leveson et. al., 1993) show that
many development process flaws, such as controlling a module
position in an open-loop configuration (without a position
detection), race conditions in software during fast keyboard
typing in the control panel, a flag incrementation and lack of
a proper review process during software development were
present.

Conclusion: Poor software quality and pursuit of
deadlines instead of quality might lead to fatal injuries.

(2) Mars Climate Orbiter
One of the critical sections of the software is its API. Simple

errors such as unit mismatching may lead to tragic events.
Such a case occurred in NASA’s Mars Climate Orbiter project
(Mars Climate Orbiter Mission Homepage, 2000). In the main
specification of the project, the SI unit system was defined as
the unit standard. Unfortunately, the part of the Martian ground
approaching software delivered by an external contractor
Lockheed Martin interpreted the specific impulse value as
a instead of the specified , which caused an error by
factor ~4.5. The problem had not been detected before the
mission launch and manifested itself during the Mars orbit
insertion maneuver. A guidance system was designed to lead
the spacecraft into the orbit 160 km above the Mars ground
level in order to perform aerobraking. During this maneuver, the
vehicle wrongly descended to 57 km, where atmospheric friction
caused its overheating and destruction. The flight controllers in
the Mission Control Centre spotted the deviation of the orbit and
proposed to perform a Trajectory Correction Maneuver No. 5, but
in the end the correction was not applied.

Conclusion: Mars Climate Orbiter mission, whose costs
were estimated to $328 million, failed due to a simple failure
to correct unit conversion error.

(3) Ariane 5
Another conversion error caused the failure of Flight

501, performed by Ariane 5 launcher (Lions, 1996). It led to the
triggering of self-destruction sequence ~40 s after launch. The
problem occurred in a layer of integration between the new and
reused software already tested in filed subsystems coming from
Ariane 4. One of the critical navigational values was calculated
as a 64-bit floating-point and then converted to a 16-bit integer
due to compatibility requirements. Unfortunately, the new,

lbf
s

N
s

208 Cezary Szczepański and Marcin Ciopcia: How to Avoid Mistakes in Software Development for Unmanned Vehicles

Let us introduce an example: many language features, which
were designed to enable low-level programmer manipulation,
are currently obsolete. The keyword “register”, which suggested
old C compilers to keep a variable in the CPU register for easy
and fast processing, is ignored by most modern compilers. Even
authors of programming books do not include it in their new
C language tutorials. Python developers also decided not to
implement incrementing and decrementing operators, which
were iconic for previous generations of programming languages.
Iterable objects and language-specific inline loop operations
replaced them.

Modern programmers are not as restricted in terms of
writing machine-optimized code as they were a few years ago.
They are permitted to write better quality, self-documenting
code, which is oriented to ease of workout instead of performance
optimization.

There comes one advice which came from the authors’
experience: write your software in a way that even a 9-year-
old child with the basic knowledge of programming could
understand. If you have a part of a code which requires much
effort to understand and to make it work – write a comment
about the details.

Additional lines of information will not affect the code
size nor performance, but will significantly save investigation
effort of other programmers or even of the original author
when some changes are required. A few additional minutes
spent on writing them is a small fee to pay. Moreover, to write a
sufficient comment, you have to understand the root cause of the
problem and express it, which may protect you from accidental
programming. It will also focus other programmers’ attention on
a problem – during e.g., reviewing process – which may trigger a
discussion about refactoring lower levels of the software in order
to avoid fighting the same problems over and over again.

It is also advisable not to use uncommon and sophisticated
language constructs, especially if they do not bring any added
value in terms of code size, performance, or improved readability.
Usually, there is a good reason why even experts in a particular
language do not use it. Often, the amount of time that would
have to be consumed to understand and verify the correctness
by the programmer who will work on this code in the future is
unacceptable, and as a result, such sophisticated coding does not
bring any added value to the project.

It is also beneficial not to forget about the underlying
programming rules, such as a descriptive naming or separating
code blocks by inline functions and comments with information
about optimizations, tested solutions, and design decisions. The
code written according to these rules will benefit from fewer
bugs, due to simplicity. It leads us directly to the second rule of
this guide.

(2) KISS
Rule No. 2: Do not complicate software in its structure or

functionalities. Simple is beautiful and practical.
Acronym KISS is usually expanded as “Keep It Simple,

Silly.” It is often combined with another rule: “You Aren’t
Gonna Need It”. Programming languages usually offer many
ways to solve a particular problem. The above rule tells that
the most straightforward way is almost always the best one.
An overcomplicated structure and unnecessarily complex
mechanisms not only makes software development harder,
but also creates more opportunities for making a mistake. It is
recommended to use complicated structures only when it is
necessary in order to fulfil the requirements. Over-engineering
often leads to performance drop, an increase in maintenance
effort, and overall bug quantity in a code.

Usually, it is also beneficial not to implement functionalities
in advance. It may cause an unnecessary increase in software’s
size, and it often leads to dead and untested code. If such an
additional feature is required, a more intuitive and efficient way
to implement it may be applied.

There is a good example of the authors’ experience,
which illustrates problems with the complexity of the software
(Szczepański, 1987). The task was the following: write a parser
of guidance commands for a combat navigation simulator in the
Fortran. Each command could include several flight parameters
and had to be parsed and executed in a single unit of simulation
time. Back then, Fortran supported neither Object-Oriented
Programming (OOP), nor sufficient abstraction layer to provide
a generic solution for parsing such commands. The code was
simple in principle, but the software fabric, which connected
particular fields in command with flight parameters was so
complex that it required more than ten pages of documentation
and training on how to use it. Even after a few months after
release, trivial errors such as wrong interpretation of a parameter
were present in the code. In that case, complexity was enforced
by the programming language limitations, but even nowadays,
with all of the mechanisms such as polymorphism or template
programming, such an inefficient and complex approach appears
in the software from time to time.

(3) DRY
Rule No. 3: Do not apply the “copy and paste” technique during

software development. It takes more time to correct it.
Another great practice is “do not repeat yourself.” If there is

a fragment of code which shares a similar structure or function, it
is always a good idea not to copy it all over the software. Instead,
such functions should be generalized or included in a common
section and applied to a specific part of the software package.

TRANSACTIONS ON MARITIME SCIENCE 209Trans. marit. sci. 2019; 02: 205-212

Let us imagine two independent accelerometer-based
subsystems. One of them is detecting acceleration for IMU/
AHRS system, and the other one is a collision detector. If
the accelerometers are of the same type, they might share
configuration routines which will be then parametrized. You
may need additional testing coverage for this procedure, but
ultimately you do not have to write and test the same thing
twice. In addition, you can reuse these routines in other projects
or implementations. You may need only minor adjustments to
make it work.

In the same way we can think about digital filtering
or mathematics primitives such as matrix or quaternion
multiplication. Such implementation may need a more extensive
testing than straightforward implementation, but the time and
robustness gained make it highly profitable in the long run.

It may positively impact not only the code size, but it also
makes debugging and bug fixing easier. If one finds a bug in the
common section, a single patch will fix it for every usage of that
procedure in the software. This approach will also lead to more
generic solutions, which will simplify the further development
process.

From FuSa's perspective, such an approach has its
drawbacks. Shared code must be compliant to the highest safety
standard in which it is used. On the other hand, when you have
e.g., a SIL-4 certified matrix multiplication library in use and
something is not working, you will focus on the implementation
details. At last, you will look for a bug in the library, as the SIL-4 is
the highest level according to IEC 61508 standard.

(4) Scout rule
Rule No. 4: Do not keep unclear parts of the previously

developed software. Clarify them when discovered and do not
procrastinate this work.

One of the scout rules is to leave a camping place in a
better condition than found at arrival. The same rule can be
applied with common sense to software development. Here is
an example. Every project has its coding style which has been
specified by previous developers. Some of them are defined,
such as K&R or GNU, but usually they are applied with slight
modifications according to a developer’s preferences. From a
workflow perspective, not a particular style, but its consistency is
a crucial factor. All style derogations force developers to make an
additional effort to analyze and understand the code, which may
significantly elongate even the simplest task.

In order to make a project pleasant to work on, it is always
profitable to correct style flaws according to a commonly
agreed standard. Small mistakes, such as typos, bad grammar in
comments, or too long lines are also worth fixing at the moment
when they are noticed. More significant errors usually have to be

reported and dealt with accordingly. If something has got your
attention, e.g. a lousy style habit, it is a good practice to ask co-
developers about the reason why it has been applied. There is a
big chance that they share the same opinion about it, and it has
to be corrected in order to improve the code quality for further
comfort of development.

(5) Modularity
Rule No. 5: Do not perform all functionalities in a one-stop-

shop.
Divide an elephant into elementary pieces and make them

work as one creature. Then you can easily change that creature’s
elements.

Flight control is usually a complicated and an entangled
piece of software where applying the “divide and conquer” rule
makes the development much more manageable. Keeping
functionalities in a small (KISS) and functional oriented modules/
layers gives more flexibility, makes the code easier to manage,
solves repetitive naming issues, and helps to avoid unnecessary
feedback.

Many early implementations of autopilot software suffered
from a lack of separation between components, i.e. code
responsible for communication was interleaved by processing,
filtration, and compensation routines. It often caused difficulties
with expanding functionality or finding a bug.

A much more efficient approach is to design modules and
track interactions between them. In such structured software, the
change in one part of the software should not affect the others.
Modification of Hardware Abstraction Layer (HAL) will allow for
e.g. transmission protocol change improved transfer efficiency
by DMA or support of new autopilot hardware. By modifying raw
data in the measurement routine, higher accuracy sensor support
can be easily added. Significant changes, such as airframe type,
may also require only a reassembly of the already present control
modules and redesign of signal mixers. Such capabilities allowed
e.g. Pixhawk or Ardupilot auto-piloting software to support many
airframes and hardware vendors on a variety of platforms – from
bare-metal microcontrollers (MCU) up to Linux-driven computers
with features like cameras, Wi-Fi modules and similar.

One of the projects, which one of the authors participated
in, was terminated due to a lack of sufficient API separation
between the modules. The software was developed on
Cortex-M3 MCU, without the Floating-Point Unit (FPU). On-board
software used state-of-the-art solutions in terms of Digital Signal
Processing (DSP) and navigation. Unfortunately, cost related
to implementing floating-point operations became too high.
It enforced the reduction of main loop frequency, which led to
problems with stability margins.

Due to the complex nature of software, the author was

210 Cezary Szczepański and Marcin Ciopcia: How to Avoid Mistakes in Software Development for Unmanned Vehicles

unable to port the whole software to MCU with FPU easily. A
decision was made that only navigational and DSP parts will be
moved to the Cortex-M4 processor on a dedicated extension
board. One of the significant problems, which occurred
afterwards was related to the program’s structure. Separation of
AHRS and navigation module required major changes in almost
all the routines in Autopilot and Ground Station due to, among
other things, complex calibration procedures.

(6) Defined APIs
Rule No. 6: Do not write an API without its precise specification

before starting coding activity.
Good module separation cannot be achieved without a

proper API specification. Multiple signals and data processing
streams are crucial parts of the flight controller. If each component
had a well-defined task, inputs, outputs, and functionality, this
would significantly increase clarity of the system operation.
Similar data streams can also be aggregated into a bus, which
may be handled by e.g. a dedicated structure, enabling signal
dependency tracking and simplifying a logging and telemetry
transmission.

Ignoring such recommendations may lead to errors such
as using raw instead of filtered data, creating unintentional
loops in adaptation algorithms, or creating unnecessary cross-
dependencies between software components, which may lead
to problems with portability and multiplatform support.

(7) Recovery handling
Rule No. 7: Do not think that recovery of your software failure

will never happen.
Plan recovery processes of the software failure most

effectively and safely, even for the cases which cannot occur.
As Arianne 5 example has shown, in the control software

all of the errors, even unexpected, should be handled safely.
In FuSa terms, such behavior is called “failing gracefully” and is
required or highly desired. The typical situation implies a fast
recovery to the fully operational state. Usually, the “safe side”
failure solutions are also acceptable. This goal may be achieved
by exception handling, simplified backup algorithms, or data
integrity checks. All unhandled erratic behaviors are potential
points of failure, even if they are not supposed to occur in proper
program execution.

Rule No. 8: Use safety features embedded in your platform —
track status of execution.

Most modern environments have embedded safety
mechanisms such as assertions, watchdogs. For some people,
the time used for proper configuring them may seem like a waste
of time. Do not be one of them! Let us imagine that you are
developing e.g. a motor controller. In the safe implementation,

you can monitor if control data is received in given intervals.
What might happen if you do not have such a solution and
communication cable will disconnect when the powerful engine
is spinning e.g. a massive propeller at full throttle?

Such solutions are called using the Japanese term “poka-
yoke”, which means “error proofing.” If you can improve safety
using a build-in procedure, it is the most convenient way to do
so. You meet them daily. Did you think of why in ATM you receive
your credit card back before the money is given to you? There is
one main reason. When you go to ATM, you are focused on the
goal – getting the money. Forcing you to grab your card before
getting money helps you not to forget a card.

 In software development, it may have many flavors. You
can assert that if the given data is valid, you can track the state of
the data and order of procedure execution. It is also good to think
about what purpose your implementation will be used for. You
can then find the things that people forget or do wrong, and care
about their safety even without their noticing it.

(8) Tests
Rule No 9: Do not think your software is ideal.
It needs extensive testing, starting from the simplest basic

units of your code.
The industry standard of software development often

embeds the Test-Driven Development (TDD) technique for
tracking and avoidance of software bugs. The main reason for
that is related to significantly lower costs in terms of time and
effort to patch a bug at an earliest stage of its development.
Finding a bug embedded into a code which has many software
layers below and was written a long time ago is highly inefficient.
It consumes much time to investigate the source of the error or
may require contacting the original author.

A variety of tests preventing the situations mentioned
above are defined. In order to verify correctness, acceptance
criteria, and properties of a small piece of a coding unit may be
applied to the performance tests. Integration and functional
tests can be used to validate the cooperation of components
in the final solution, which can then be verified against the
requirements by the acceptance tests in a real environment using
e.g. the Hardware-in-a-loop (HIL) technique.

In complex systems, changes embedded into one module
may cause erratic behavior in another seemingly unconnected
component. The leading cause of such errors is usually tough to
track. In order to detect them early, periodical regression tests are
desired.

Coverage and static analysis tests can also test the proper
execution of the code. They can detect other types of hard to
find bugs such as invalid conditions, variable overflow, or a dead
piece of the code.

TRANSACTIONS ON MARITIME SCIENCE 211Trans. marit. sci. 2019; 02: 205-212

One of the benefits of extensive testing is enabling
developers to apply one of the Extreme Programming rules: “Fail
it until you make it.” It is especially desired for complicated and
hard to develop pieces of code. It can also assure a proper design
of the recovery handling procedures.

(9) Four eyes principle
Rule No. 10: Do not think you are a perfect software developer.
Share your ideas and code with others. They can see what is

unfeasible to be seen by you.
“Four eyes principle” is a crucial element of many modern,

agile programming and management techniques. It implies
that at least two people should make any significant decision. It
helps to avoid errors caused by subjective bias. This useful rule
can also be embedded in a software development process as a
review requirement. A review process enables other developers
from the team to share their thoughts and comments about
the code changes before they are delivered into the mainline
of software under development. If the team and the software
architect accept the proposed changes, they are embedded into
the common base for further development.

Such an approach not only improves error avoidance, but
also allows development uniformity and consistent coding style
across the entire project.

(10) Proper use of development tools
Rule No. 11: Do not mix the tested and reliable parts of software

with the newly developed if the latter have not been appropriately
checked.

Modern development support tools enable developers to
ensure safe cooperation on their software. However, there are
two significant aspects to be aware of, which cannot be ensured
by even the most advanced solutions.

One of them is to keep experimental, untested code in
separate branches as long as they are not ready to be embedded
into the final solution. Hacks and temporal functional overwrites
are often required during the addition of a new, sophisticated
functional update. One of the most important things is not
to forget about keeping them tagged and separate from the
mainline of the development branch. Not only does it allow other
developers to work on the functionalities separately, but it also
ensures the safety of operation, e.g. during flight tests which use
experimental software.

The other, no less important aspect is to track temporary
workarounds and not yet implemented functionalities. Time
pressure on software developers is usually significant. It often
leads to forgetting about things which need to be done. Putting
a “to do” comment in code or an issue in the task tracker may
prevent situations when the solution only seems to be ready for
delivery while being left unfinished.

(11) Take your time
Rule No. 12: Do not be in a hurry when writing software.
You need to prepare healthy slow food which supports the

vehicle.
Getting things right is far more important than doing them

fast, especially in the development of software for flying objects.
A danger of causing personnel injuries or crashing UAV on a car
or a building is always a worse option than facing consequences
of delivery after the deadline.

4. SUMMARY

The proposed solutions and methods are just the tip of
an iceberg in terms of FuSa and safe software development
for UVs. Many experienced developers may find the presented
guidance being only truisms, but neither of them, we hope,
will disagree with the importance of the presented aspects
nor will deny the existence of failures caused by ignoring the
above mentioned rules. As long as failures caused by improper
development techniques happen, there is a need for a public
debate on the robustness of unmanned vehicles software. The
number of crashed prototypes should not be the measurement
of vehicle motion control advancement. Recent improvements
in a code quality of the popular open-source flight controllers
dedicated to UAVs, such as ArduPilot (ArduPilot Code repository,
2017), LibrePilot (LibrePilot Code repository, 2017) or Pixhawk
(Pixhawk Code repository, 2017), have shown that the need
begins to be noticed. All UV software programmers share the
same goal: to make software as failure resistant as possible. It
is the required step for breakthroughs in aviation of the future,
such as autonomous flights over urban areas in the so-called
U-space. Software already started to follow this path, but there
is still much work to do. The same problems are connected with
other types of UVs. They are not so broadly and loudly discussed
as they are mostly being developed for professional applications,
often military, or for use in unpopulated areas. In such cases, the
development cost factors prevail the safety reasons.

REFERENCES

Ardupilot Code repository. Available at: https://github.com/ArduPilot/ardupilot,
accessed on: 29 April 2019.

IEC 61508, 2010. Functional safety of electrical/electronic/programmable electronic
safety-related systems. International Electrotechnical Commission (IEC), Sydney,
Australia.

International Standard ISO/IEC 14882. Programming Languages – C++, ISO/IEC.

Leveson, N.G. & Turner, C.S., 1993. An investigation of the Therac-25 accidents.
Computer, 26(7), pp.18–41. Available at: http://dx.doi.org/10.1109/mc.1993.274940.

LibrePilot Code repository. Available at: https://github.com/librepilot/LibrePilot,
accessed on: 29 April 2019.

https://github.com/ArduPilot/ardupilot
http://dx.doi.org/10.1109/mc.1993.274940
https://github.com/librepilot/LibrePilot

212 Cezary Szczepański and Marcin Ciopcia: How to Avoid Mistakes in Software Development for Unmanned Vehicles

Lions, J.L., 1996. Ariane 5 – Flight 501 Failure, Report by the Inquiry Board. Available
at: http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html, accessed on: 26
October 2017.

Mars Climate Orbiter Mission Homepage, 2000. Available at: https://mars.jpl.nasa.
gov/msp98/orbiter/, accessed on: 29 April 2019.

Object-Oriented Technology and Related Techniques Supplement to DO-178C and
DO-278A, RTCA DO-332, RTCA Inc.

Pieniążek J., 2014. Kształtowanie współpracy człowieka z lotniczymi systemami
sterowania. Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów, Poland.

Pixhawk Code repository. Available at: https://github.com/PX4/Firmware, accessed
on: 29 April 2019.

Sauser, B.J., Reilly, R.R. & Shenhar, A.J., 2009. Why projects fail? How contingency
theory can provide new insights – A comparative analysis of NASA’s Mars Climate
Orbiter loss. International Journal of Project Management, 27(7), pp.665–679.
Available at: http://dx.doi.org/10.1016/j.ijproman.2009.01.004.

Sommerville, I., 2015. Software Engineering, Addison-Wesley Publishing Company,
USA.

Szczepański, C., 1987. Adaptation of application software for SL-106 simulator
instructor stand. Report Optyka Ltd, Warsaw, pp. 43 (in Polish).

http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html
https://mars.jpl.nasa.gov/msp98/orbiter/
https://mars.jpl.nasa.gov/msp98/orbiter/
https://github.com/PX4/Firmware
http://dx.doi.org/10.1016/j.ijproman.2009.01.004

