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The interest in video surveillance has been increasing 
in the fields of maritime industry in the past decade. Maritime 
transportation system is a vital part of the world’s economy 
and the extent of global ship traffic is increasing. This trend 
encourages the development of intelligent surveillance systems 
in the maritime zone. The development of intelligent surveillance 
systems includes sensor and data fusion, which incorporates 
multispectral and multisensory data to replace the traditional 
approach with radars only. Video cameras are widely used since 
they capture images of greater resolution than most sensor 
systems. Also, combined with video analytics they provide sensors 
with high capability, complex pattern recognition analytics, and 
multiple variables for the decision making process. In this paper, 
an overview of a small part of the system is presented – horizon 
detection.
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1. INTRODUCTION

Since radar tracking is sensitive to shape, size and material 
of the targets, it has to be enriched with other types of sensors for 
better situational awareness, collision avoidance, and navigation. 
Video cameras are widely used since they capture images of 
greater resolution than most sensor systems. Also, combined 
with video analytics they provide sensors with high capability, 
complex pattern recognition analytics, and multiple variables for 
the decision-making process.

Maritime video surveillance is important for a wide range 
of applications. For example, video surveillance systems are 
employed to increase the security of ports and ships, to control 
maritime traffic in ports or a maritime zone, and it is one of the vital 
systems in autonomous ships. Maritime video surveillance may 
take place from a small surface-vehicle (manned or unmanned)-
mounted camera or buoy in line with the water to static land-
based cameras or aerial surveillance from drones. According to 
(Gladstone et al., 2016; Bloisi et al., 2017; Vujović and Kuzmanić, 
2018), maritime surveillance systems have to overcome a set of 
challenges:
•	 Wide monitored domain
•	 Weather issues (rain, snow, fog …)
•	 Ever-changing nature of the sea (waves, white foam, sun 
reflections)
•	 Inconsistent size of tracked objects
•	 Multiple tracked objects with possible occlusions.

As described in Prasad et al. (2017), basic maritime video 
surveillance system is composed of five main components: the 
initial detector, image processor, classifier, tracker, and behaviour 
analyser if necessary. The basic components of maritime video 
surveillance are illustrated in Figure 1.This work is licensed under
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Figure 1.
Basic components of maritime video surveillance.

Figure 2.
Generalised flowchart of maritime surveillance data 
processing for OOI detection (Prasad et al., 2017).

The initial detector detects pixel motion or an object based 
on a classifier set. The obtained information is managed by the 
image processor for noise elimination. Also, relevant regions of 
interest (RoI) are determined. RoIs in the frame are evaluated by 
the classifier to determine presence of an object that is object of 
interest (OOI). The role of the tracker is to locate the OOI in a RoI 
at each frame and determine its position. The OOI’s course and 
speed are sent to behaviour analyser. These components are not 
part of every maritime video surveillance system.

This paper presents an overview of horizon detection 
methods. The second section describes the main topic, using 
math and examples. It is divided into several subsections dealing 
with projection-based, region-based, hybrid and ANN (Artificial 
Neural Networks) methods. Finally, the conclusions are given.

2.HORIZON DETECTION IN MARITIME ZONE VIDEO 
SURVEILLANCE

Horizon detection is one of the essential tasks in maritime 
video analysis since its results affect the performance of the 
surveillance system. This importance can be seen in Figure 2 as 
it shows a generalized flowchart of data processing in maritime 
surveillance for object detection. 

Horizon information is used in some object detection 
approaches and for the reduction of false positives for a given 
object detection rate (Jeong et al., 2018a). Also, it is used for 
distance prediction of another object to the camera (Gladstone 
et al., 2016) or for maritime target detection and tracking in 
infrared images (Jian and Wen, 2019). We can distinguish three 
main approaches for horizon detection: projection-based, 
region-based and hybrid. We also noted a few methods based on 
artificial neural networks (ANN).

2.1. Projection-Based Methods

Projection-based methods use edge detectors (Moreira 
et al., 2014), such as Canny detector (Gershikov et.al., 2013), to 
compute the edge map of the image. To identify line features 
more easily, the edge map is projected to another space. For such 
projections Hugh and Radon transforms are often used.

In the line equation:

(1)

(2)

(3)

x cos (θ) + y sin (θ) = ρ

H (θ,ρ) = ∫∫ {1-δ [I(x,y)] } δ (x cosθ+y sinθ-ρ) dxdy

R (θ,ρ) = ∫∫ I(x,y) δ (x  cosθ+y  sinθ-ρ) dxdy

where θ is the angle between x-axis and normal to the line, and 
ρ is the distance from the origin of the coordinate system to the 
line. The coordinates (x, y) of an edge pixel are transformed as a 
curve into the Hough space (θ, ρ) (Ginkel et al., 2004):

where δ is the Dirac delta function while I(x, y) represents the 
edge map. (θ, ρ) cells in the histogram, corresponding to the 
largest values of H(θ, ρ) represents the line parameters (Prasad 
et al., 2017).

The Radon transformation is formulated as (Ginkel et al., 
2004):

where the cells in (θ,ρ) containing the highest  number of entries 
in R(θ, ρ) define line parameters. The simplicity of projective 
approaches makes them popular, but they are sensitive to pre-
processing (Prasad et al., 2017). Also, when the dominant line is 
not the horizon line, they frequently fail to detect the correct line 
(Liang and Liang, 2019).



108 Miro Petković et al.: An Overview of Horizon Detection Methods in Maritime Video Surveilance

Figure 3.
Results of CFS horizon line detection method (Sun and Fu, 2018, CC BY Licence).

(4)D (R1 , R2 ) = (µ1 - µ2 )T (∑1 - ∑2 )-1 (µ1- µ2 )

2.2. Region Based Methods

By estimating the RoI in an image containing the horizon 
line, Mou et al. (2016) reduced the processing area of the original 
image, thus reducing the computing expense. Also, the authors 
used the random sample consensus-based method (RANSAC) 
hierarchically. This approach proved to be fast, but it also renders 
errors on scenarios with much noise, e.g. sea-shore scenarios, 
objects on the horizon, etc. Some region-based methods rely on 
the fact that in the horizon region, intensity variations are higher 
than in the sky or sea regions alone. Such intensity variations can 
be used for horizon detection. Also (Gershikov, 2014) evaluated 
usage of colour variations in horizon detection. In the paper 
by Jeong et al. (2018b), the authors investigated the use of RoI 
method for horizon detection. In the first step, the input image 
is resized and divided into N horizontal regions with 50 % 
overlapping, and mean vectors and covariance matrices of the 
colour distribution are calculated for each region. To calculate 
the difference between two successive regions, Bhattacharyya 
distance is used:

where µ and ∑ are the mean vectors and covariance matrices of 
the colour distribution of the regions.

The region with the highest distance is chosen as the RoI 
for horizon detection, confirming that average region colour 
suddenly changes near the horizon. This method detects edges 
by applying a median filter (with three different scales) as 
smoothing filter of various sizes. Then, Canny edge detector is 

(5)W (x,y) = ∑s=1 ws∙ Es (x, y)N

where:
N represents the number of median filters
ws is the weight of scale s
Es is the edge maps of the scale s.
For the horizon line estimation, Hough transform and a 

least square method are used sequentially. This approach showed 
reliable performance, but when the horizon edges could not be 
detected because of blur occurring due to the moving camera 
problem, its performance degraded. To solve this problem, the 
authors suggested using sophisticated filtering methods to 
overcome the motion of vessels.

In Sun and Fu (2018), for unmanned surface vehicle (USV) 
application, the authors used line segment detection algorithm 
with fast computational speed (von Gioi et al., 2010). By applying 
gradient features to extract all line segments for building a pool 
of candidate lines. Since the pool will probably contain many 
false detection results, hybrid feature filtering is used to select 
segments of the horizon line from candidate pool. Morphology 
features and colour features of the horizon line are used to filter 
out the false results and, similar to Jeong et al. (2018b), calculate 
the distance between the regions. Line segments are stitched 
using RANSAC to obtain the whole horizon line. The average 
computing time for this method was 94 ms (Sun and Fu, 2018), 
and it proved to be fast and robust. Also, when the horizon lines 
are very blurry as shown in Fig. 3 b), its performance degraded.

applied on the multi scale images independently (Jeong et al., 
2018) to obtain the weighted edge map, as follows:
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2.3. Hybrid Methods

Fefilatyev et al. (2012) used a hybrid approach to generate 
the line estimation by projection method and then applied 
statistical analysis. Regions below and above the estimated 
line are considered as potential sky and sea regions, then their 
statistical distributions were computed. Then Bhattacharyya 
distance between the two distributions was calculated as follows:

(6)f (Y, α ) = (λ1- λ2 )T (∑1+ ∑2 )-1 (λ1- λ2 )

where λ and ∑ represent the mean vector and the covariance 
matrix of distribution, and the estimated line with the maximum 
value is chosen as horizon. In Lipschutz et al. (2013) a similar 
method is proposed,  where at the pre-processing stage they 
used morphological filter, and histograms of sky and sea regions 
were calculated to produce the colour distribution of each region.

The method proposed by Liang et al. (2015) consists of 
three parts, as shown in Fig. 4.

Figure 4.
Flowchart of method proposed by Liang et al. (2015).

The first part locates the horizon region by using grey level 
concurrence matrix from the texture feature. This feature helps 
in the reduction of interference caused by waves and light. The 
second structure consists of OTSU algorithm used for obtaining 
a set of estimated points of the horizon line. The third structure 
is the horizon line detection, which eliminates unwanted points 
caused by ships and waves appearing on the horizon. For this 
purpose, the authors designed a simple clustering algorithm 
with a low computation cost. The proposed method proved to be 
very capable for maritime images under complex background, 
e.g. clouds, sea waves or too much light. The authors noted that 
by narrowing the search window this approach can perform 
faster to achieve a greater processing speed without affecting 
the accuracy of horizon detection.

In their paper, Prasad et al. (2016a) proposed a multi-
scale cross modal linear feature (MSCM-LiFe) method, where 
multi-scale approach for edge detection is adopted. Multi-scale 
images Is are computed with vertical median filter of scale s. For 
estimation of the horizon line, Hough transform (Eq. 1) is used, 
and top 10 candidates with the largest values of H(θ,ρ) are 
selected and their Hough score Hn is stored . Also, mean multi-

scale image ( Ĩs ) is computed, and intensity variation is calculated 
for each column of pixels defined by pixel x, so the point (x,y’(x)) 
is determined as follows:

(7)y'(x)=arg max |                  | d Ĩs (x.y)

dyy

(8)Ss= mean |                  | d Ĩs (x.y)

dyx y= y'(x)

Then, a line is fitted on all points of maximum intensity variation 
and is used as IVA candidate. For each scale s, the mean value 
of intensity gradients of all columns is determined to obtain IVA 
score Ss:

Each Hough candidate n and IVA candidate s are used to 
compute the goodness score of the pair and their geometric 
proximity. Goodness score is defined as:
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(9)G(n,s) = Hn Ss

(11)A(n,s) = G(n,s) P(n,s)

(12)x cos (θ)+ y sin (θ) < ρ

(13)x cos (θ)+ y sin (θ) ≥ ρ    

Figure 5.
Results of MSCM-LiFe horizon line detection method (Sun and Fu, 2018, CC BY Licence).

(10)P(n,s) = (1-(               )2 ) cos2 (αn - αs )
yn - ys

max (y)

while geometric proximity P(n,s) is defined as:

where max(y) is the number of pixels along the y-axis, 
(Yn-Ys)/max(y) is the relative vertical distance between horizon 
candidates  (n, s), the term (αn-αs) represents angular difference 
(Prasad et al., 2016a). By analysing goodness score and geometric 

According to Sun and Fu (2018), MSCM-LiFe has high 
average computation time of 231 ms. Also, this method scored 
excellent results when horizon line was blurry, as shown in Fig. 
5 b), but when horizon line was partially occluded by ships or 
objects, it failed to detect the line accurately Fig. 5 a).

proximity of each estimated pair, the final horizon line is obtained 
by selecting the Hugh candidate with highest affirm score A(n, s):

Also, in the paper by Prasad et al. (2016b) multi-scale 
consistence of weighted edge Radon transform (MuSCoWERT) 
method was proposed. First, this method generates multi-scale 
images by applying edge preserving filter, with different sizes. It 
helps in smoothing intensity variations not related to the edges, 
coming from dynamic sea and sky noise. Then, by analysing 
the length of the edges the authors generated weighted edge 
map. Radon transform is applied for each weighted edge map to 
approximate parameter of the estimated line. Then, by observing 
each estimated line parameter, final horizon line is selected by 
voting. Despite its excellent performance, this method can fail in 
certain scenarios where the horizon line is occluded by various 
objects or ships. 

Most hybrid methods require statistical analysis for the 
horizon detection since the number of estimated horizon lines is 
large. Hence, they have high computation time.

2.4. ANN-Based Methods 

Machine learning approach was proposed by Fefilatyev et 
al. (2006) where they manually drew the horizon line as a ground 

truth θ and ρ parameters of line on each image used for classifier 
training. All pixels that satisfied:

were labelled as sky-pixel, and all pixels that satisfied:

were labelled as ground-pixel. The authors defined 21 attributes 
for each pixel, texture measurements for each of the three colour 
channels (described in Fefilatyev et al., 2006) for a histogram of 
10 x 10 region centred on each pixel. The output of the classifier 
is a black and white image (representing ground and sky) in 
which they obtained the line that separated the white and 
black regions declaring it as the horizon line. The results of this 
approach largely depend on the amount and variety of data used 
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for classifier training, and have lower accuracy under changing 
lighting conditions.

In Kristan et al. (2016), the authors used image segmentation 
with weak priors for obstacle detection on USV. The role of the 
semantic segmentation is to assign every pixel its appropriate 
class label. The authors observed that each image can be split 
into three semantic regions where the bottom region represents 
the sea, top region represents the sky while middle region can 
represent the land or horizon region. Their approach estimates 
per-pixel class probabilities and optimizes segmentation within 
a single online framework, avoiding the need for a good horizon 
detection estimation. However, this probabilistic approach is 
general enough to include horizon detection if needed. Semantic 
segmentation approach is evaluated by Ahmad et al. (2017) 
on land-sky images under various weather and illumination 
conditions. Fully convolutional network performed the best on 
said images, but further post processing is required to improve 
the segmentation. Cane and Ferryman (2018) evaluated semantic 
segmentation networks (SSN) for object detection system in the 
maritime environment. The authors proposed a simple system 
which takes RGB images on input. Then, images are processed 
using SSN to generate the probability distribution of a class for 
each pixel. A binary map is created for each class by selecting 
pixels with the maximum probability for that class. Next, by 
marking the connected components and computing bounding 
boxes, estimated regions are extracted from the binary maps. 
For network training, they used subset of the ADE20k dataset 
because it was the only dataset available at the time which covers 
the appropriate classes with pixel level ground truth. The authors 
found that their approach made the horizon line detection easy 
by extracting it from segmentation map.

A novel approach for horizon detection was proposed 
by Jeong et al. (2018a). The authors segmented each pixel into 
semantic categories using a pyramid scene parsing network 
(PSPnet). To extract sea line, in each column of the segmented 
image PSPnet searches for the maximal vertical location 
corresponding to the sea. Unnecessary edges are excluded by 
using brightness variation analysis. For situations where the 
horizon is occluded by objects such as ships or buoys, the authors 
implemented a robust line fitting method to complement the 
PSPnet. To estimate candidate line, the least squares method 
is applied to the boundary image. The residual, between the 
estimated line and the boundary pixels is calculated. The pixels 
with distances larger than the median residual are ignored. 
Repeating this process until convergence of the horizon 
parameters improves the accuracy and robustness of the horizon 
line detection of this method.

The use of back propagation neural network (NN) was 
evaluated in the paper by Kumeechai and Jiriwibhakorn (2019) 
and tested versus Hough transform, least squares and RANSAC. 
Their focus was on the accuracy rate and efficiency of the horizon 

detection. Back propagation NN gave the best results in general, 
but with high computation time. Therefore, it is not suited for 
embedded applications. Praczyk et al. (2019) applied AutoEncoder 
NN for horizon line detection in maritime images taken in the 
open sea. Hough transform was applied for line extraction and 
was represented by a feature vector containing the average 
brightness of the image fragment below and above the line. 
Then, authors trained an AutoEncoder on the representations 
of only true lines, while neglecting the remaining lines. The aim 
of this approach is to obtain the network that would be able to 
accurately reconstruct true lines on the output, while the other 
lines should be reconstructed with greater error than the true 
lines. This method proved highly effective for horizon detection, 
but is highly computation demanding.

3. CONCLUSION

Research in the field of maritime video surveillance is 
increasing every year, but there are not many papers in the horizon 
detection niche, as can been observed from this overview. The 
projection-based, region-based, hybrid and ANN-based methods 
for horizon detection are discussed in the paper. Simplicity is the 
main advantage of projection-based methods, but they often fail 
in the horizon line detection when horizon is not the dominant 
line in the frame. On the other hand, the region-based methods 
have proved to be reliable in the horizon line detection with low 
computation time, which is ideal for static land-based maritime 
surveillance. However, its performance degraded when used on 
buoy as system due to blur occurring from the moving camera 
problem. Hybrid method combines projection and/or region-
based methods with statistical analysis with excellent results. The 
usage of statistical analysis greatly increases the computation 
time, but this problem can be reduced by narrowing the search 
window.  The researches of ANN methods in the maritime 
surveillance increased in the past couple of years. They have 
proved to be very effective in the maritime object segmentation 
and made the horizon line detection easy, accurate, and robust. 
ANN methods will improve even more if the number of datasets 
with pixel-level ground truth for semantic segmentation network 
training increases.
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