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This study aims to estimate the fuel consumption of marine 
diesel generators onboard. Objective technical specifications 
and operational data on the ship's power generating plants 
and port calls were collected from an oceangoing oil/chemical 
tanker and used to develop the mathematical model of the 
plant in the Python and MATLAB environment. The model 
consists of alternators, prime movers and load distributions of 
the ship’s power generating plant and provides information on 
fuel consumption in metric tons calculated based on hours of 
operation and specific fuel consumption data. Regression models 
have helped predict future fuel consumption for the plant and the 
optimal model for the dataset was identified by comparing four 

Regression Modelling Estimation 
of Marine Diesel Generator Fuel 
Consumption and Emissions 
Onur Yuksela, Burak Koseoglub

KEY WORDS
 ~ Marine diesel engines 
 ~ Mathematical modelling
 ~ Linear regression
 ~ Support vector regression
 ~ Artificial neural networks
 ~ Time series analysis
 ~ Ship emissions

1. INTRODUCTION

Trustworthy ship system fuel consumption (FC) estimation 
is relevant in economic and environmental terms (Prpić-Oršić 
and Faltinsen, 2012). The understanding of fuel consumption 
dependencies increases the management efficiency of ships. FC 
systems can be optimized by using predictions. Future estimations 
are also helpful for the assessment of vessel and system 
conformity with the regulations of the International Maritime 
Organization (IMO). IMO regulations in maritime activities aim to 
lower shipping-related emissions since maritime transportation 
is a major contributor to air pollution (IMO, 2014). In addition 
to setting emission limits, the IMO aims to improve marine 
vessels efficiency by using methods such as Energy Efficiency 
Design Index (EEDI) and Ship Energy Efficiency Management 
Plan (SEEMP). Since emissions depend on the quantity of fossil 
fuels consumed by ship systems, FC optimization is becoming 
increasingly important. Ship-owners use fuel estimations to 
comply with regulations and improve the operational efficiency 
of their vessels (Eide et. al., 2011; Uyanık et. al., 2020). 

Marine diesel generators power the ship by using energy 
obtained from fossil fuel combustion. They consist of a diesel 
engine as the prime mover and a synchronous alternator for 
three-phase electricity generation. Power generating plants may 
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different algorithms. As the results have shown the Ordinary Least 
Squares Regression to be optimum, it was used to make one, five, 
and ten-year predictions. The predictions for one-year, five-year, 
and ten-year periods are 4,322,436, 10,684,860, and 18,615,472 t 
respectively. The selected model predicts fuel consumption with 
R2 of 0.999, MAE of 3.932, and RMSE of 2.935. Fuel consumption 
predictions facilitated plant emission calculation. 
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have more than one marine diesel generator, depending on the 
ship’s electrical load. The number of marine diesel generators in 
a plant can vary depending on the type of operation (McGeorge, 
1995). Marine diesel generators are continuous fuel consumers 
that considerably contribute to air pollution. Ship electrical 
needs are particularly high during cargo transfer operations in 
ports, resulting in the release of pollutants (Styhre et al., 2017). 
Real time assessment of marine diesel generator FC can indicate 
emission quantities and encourage improvements.

Some studies conducted in the last decade have dealt with 
FC calculation and estimation onboard ships. For instance, Kesgin 
and Vardar (2001) computed emissions from ships in Istanbul and 
Canakkale straits using automated identification system (AIS) 
data. Miola and Ciuffo (2011) proposed an alternative approach 
to ship pollutant prediction and assessed the reliability of current 
techniques. Prpić-Oršić and Faltinsen (2012) proposed a method 
of estimation of ship speed loss and related CO2 emissions for a 
container ship on the North Atlantic route. Winnes et al. (2015) 
computed GHG emissions using AIS and ship technical data from 
ships, then analyzed GHG emission reduction strategies for ships 
in port areas. They analyzed three scenarios, namely “Alternative 
Fuel”, “Ship Design” and “Operation” at the Port of Gothenburg. 
Tichavska and Tovar (2015) built a model based on AIS data and 
the Ship Traffic Emission Assessment Model (STEAM). Their model 
calculated the emissions from cruisers and ferries in the Port of Las 
Palmas. Bialystocki and Konovessis (2016) proposed a statistical 
approach to predicting a ship’s FC and speed curves. BalBesikci et 
al. (2016) constructed an artificial neural network (ANN) to analyze 
the relationship between engine revolutions per minute (rpm) 
and outside factors using the noon report data. Chang (2016) 
analyzed the relationship between carbon emission production 
and deadweight tonnage of shipping transportation.  Leloup et. 
al., (2016) built a ship propulsion system model involving kites 
and conducted a fuel estimation for the system.  Styhre et al. 
(2017) developed a model that estimates GHG emissions from 
ship operations from different ports. Simonsen et al. (2018), 
constructed a model that predicts FC and energy usage of cruise 
vessels using AIS data and technical specifications of ships. Wang, 
et. al. (2018) estimated ship FC using Least Absolute Shrinkage 
and Selection Operator (LASSO) regression. Yang et al. (2019) 
built a genetic algorithm-based grey-box model to estimate a 
ship’s FC using crude oil tanker’s operational data. Le et al. (2020) 
presented an ANN model to predict the FC of container ships in 
Korea. Liu and Duru (2020) proposed a probabilistic Bayesian 
prediction algorithm that forecasts ship emissions based on ship 
movements gathered from AIS data. Le et al. (2020) conducted 
a study that predicted the FC of ocean-going container ships 
using a regression model. The data were acquired from a large 
container terminal in Korea. Farag and Ölçer (2020) used ANN and 
multi-regression methods to predict ship power and FC. Uyanik 
et. al. (2020) compared the performance of different regression 

algorithms with respect to ship fuel consumption assessment. 
Reis et al. (2020) developed and tested two feature-oriented 
models to estimate shipping CO2 emissions using an actual data 
set from a Ro-Pax ship. Li et. al. (2020) conducted a study that 
aimed to optimize the exhaust emissions from a marine dual-
fuel engine using Response Surface Method. Zhu et. al. (2021) 
introduced a joint model to estimate the fuel consumption of a 
passenger ship. Kim et al. (2021) created an ANN model which 
can estimate the FC of a container ship using operational data. 
Moreira et al. (2021) used an ANN method to estimate FC and 
ship speed through the establishment of the correlation between 
propulsion, weather inputs, ship speed and FC. This overview of 
literature clearly shows that ANN is a popular strategy owing to its 
good performance with complex problems. The studies generally 
focus on and examine propulsion from an environmental 
standpoint. The objective of this study is to enable the estimation 
of fuel consumption and emissions of marine diesel generators 
used on a 29681 GT oil/chemical tanker. The ship’s power 
generating plant is a constant emission producer that has not 
been studied in detail. The plant runs during both navigation 
and port operations. Particularly in port operations, the number 
of working generators increases due to higher load demands, 
resulting in higher air pollutant emissions. A detailed analysis 
of the plant can help determine exact pollutant quantities and 
consequently encourage plant innovations. This study provides 
an improved mathematical model that includes different plant 
operation modes and regression analysis based on the data 
obtained from the model’s calculations. The model is based on 
real-time data and operations. The study is significant because 
the future estimations given focus on the plant’s environmental 
impact. The remainder of the paper is divided into three sections. 
Section 2 explains the mathematical background, simulation 
modelling of a marine diesel generator plant and regression 
models. Section 3 gives the results, findings and comparison of 
these models, while Section 4 contains conclusions, discussions, 
and recommendations.

2. MATHEMATICAL BACKGROUND AND MODEL 
DESCRIPTION 

This section gives the equations used in the ship power 
plant model, describes the logic and provides validation of the 
model. Evaluation metrics, regression algorithms and preferred 
choices are also mentioned in this section.

2.1. Ship Power Plant Simulation

Technical specifications, operational data, electrical load in 
different operating modes and cargo transfer information have 
been collected from a ship. Position and port of call data have been 
obtained from AIS. The data were collected between 06/12/2019 
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and 07/06/2021,  and used to develop a mathematical model of 
the plant, while the plant’s fuel consumption was established 
in Python and MATLAB in this same period. Various regression 
models were compared to find the best prediction algorithm for 
the data set.

The prime mover uses heavy fuel oil (HFO) during 
navigation and marine gas oil (MGO) during harbor and port 
operations. Fuel specifications were obtained from ship fuel 
records. The manufacturer of the engine provided look-up tables 
that include brake-specific FC data for the prime mover in the 
numerical model. The torque and power transmitted to the 
synchronous generator were calculated using the manufacturer's 
stroke, bore and break mean effective pressure (bmep) data. Eq. 
1 is the displacement volume (Vd ) calculation, where b is the 
bore and s piston stroke. Eq. 2 gives the transmitted power (P) 
calculation. Reference generators had six cylinders (n), while 
the number of firing strokes (N) was calculated by dividing the 
number of revolutions by 120. ηt is transmission efficiency, set at 
0.99 (Altosole et al., 2019; Altosole and Figari, 2011; Pulkrabeck, 
2004).

(1)
b2

4
Vd = π∙(        ) ∙ s

(2)P = ( Vd ∙ n ∙ bmep ∙ N/1000 ) ∙ ηt

(3)VΦ = EA - jXS IA - RA IA

Synchronous alternator onboard test trial provided the data for 
the simulation. Eq. 3 demonstrates the phase voltage calculation 
using armature current (IA), armature resistance (RA), synchronous 
reactance (Xs ) and induced voltage (EA).

Terminal voltage (VT) equals √(3VΦ ) for Y-connected phases. Eq. 
4 is the calculation of alternator input power (Pin ). γ is the angle 
between EA and IA. Eq. 5 indicates synchronous generator output 
power that can be calculated using line or phase variables, 
where IL is line voltage. Eq. 6 is the voltage drop (VD) percentage 
calculation, using no-load voltage (Vnl ) and full-load voltage  
(Vfl ). The higher the synchronous generator load, the lower the 
rpm of the prime mover. Eq. 7 is the calculation of the prime 
mover's speed drop (SD) percentage. The generator's no-load 
speed is nnl, and full-load speed nfl .

(4)Pin = 3 EA IA cosγ    

(5)Pout = √3 VT IL cosθ =  3VΦ IA cosθ

(8)Pout = sp ( fnl - fsys )

(9)Ptot = Pload = Pout1 + Pout2 + Pout3

(6)VD=( Vnl - Vfl )/ Vfl ) ∙ 100

(7)SD=( nnl - nfl )/ nfl ) ∙ 100

Eq. 8 explains the relationship between generator power and 
frequency. The generator's no-load frequency is fnl , the system's 
operating frequency is fsys , and the slope of the speed-power 
curve is sp expressed in MW/Hz.

In a system with three equivalent generators functioning in 
parallel, the total power is equal to the sum of their power. The 
total power (Ptot ) of the system is shown in Eq. 9 (Chapman, 2005; 
Krause, et al., 2002; Hansen and Michalke, 2008).

  The ship power plant simulation consists of three 
main parts. The prime mover, the synchronous generator and 
the required electrical load. Table 1 provides the essential 
specifications of these parts. Load test, governor test, parallel 
running test, open circuit and short-circuit test results have 
been obtained from alternator manufacturer’s manuals and ship 
electrical equipment tests conducted before installation. FC 
and other required data for the prime mover model have been 
obtained from instructions and manuals of the diesel engine 
manufacturer. Data on electrical load in different operation 
modes have been obtained from electrical load tests conducted 
during ship trials. Figure 1 is a basic sketch of the ship's electrical 
distribution system.



82 Onur Yuksel and Burak Koseoglu: Regression Modelling Estimation of Marine Diesel Generator Fuel Consumption and Emissions

Table 1.
General information on marine diesel generators and electrical load.

Prime Mover Alternator

Engine/Generator MCR 960/900 kW Output Capacity 1312.5 KvA

Rpm 900 Voltage 450 V

Cylinder Bore/ Piston Stroke 
(mm)

210/320 Frequency 60 Hz

Swept Volume per Cylinder 
(dm3)

11.1 Poles 8

Piston Mean Speed (m/s) 9.6 Voltage Variation 2.50 %

Compression Ratio 17:1 Voltage Adjust 5 %

Mean Effective Pressure (bar) 24.1 Power Factor 0.8 Lagging

Electrical Load

Operational Mode Number Load (kW) Current (A)

Sea Going 1 850.6 1364.152

Sea Going with Tank Heating 2 1195.7 1917.607

At Port 3 1122 1799.410

At Cargo Handling 4 1781.5 2857.085

At Harbor 5 571.3 916.224

At Harbor with Tank Heating 6 863 1384.038

The model compares the active power of generators, 
computed in the synchronous generator section, with load and 
current to determine the number of generators required for 
the given operating mode. Then, it ensures the operation of the 
ship's synchronous generators in a predetermined sequence, 
depending on the number of generators. Generator operation 
sequence can be determined at the beginning of the simulation 
and is initially set as 3, 1, 2. The generator sequence is updated 
in maintenance intervals obtained from the operation manual. 
In other words, the model is adjusted to ensure the overhauled 
generator is the last in the sequence. If the generator is in 
operation, the model fills the binary array with value 1, otherwise 
with 0. The program next examines the control array to calculate 
the frequency, speed drop and slope of the running generators' 
power curve. Then it computes system frequency, power, load, 
and current requirements for each generator, utilizing the control 
array and a number of generator data. The computed load of 
each generator, power of the prime mover, armature currents, 
internally generated voltages, line voltages, voltage regulation 
percentages and synchronous power output help determine 

brake-specific FC under changing load conditions. FC and 
emissions produced by the generator, both in kg per hour, are 
calculated using brake-specific FC. Operation types and times 
have been established based on port call and operational records 
obtained from the ship. Therefore, the simulation computes total 
FC and emissions in metric tons. Figure 2 illustrates the logic of 
the marine diesel generator’s mathematical model.

Emission calculations are based on fuel consumption 
computed by the model and emission factors taken over from 
Kuzu et al. and 2021; Trozzi, 2010. Eq.10 is the emission calculation 
and Table 2 shows marine gas oil (MGO) and heavy fuel oil (HFO) 
emission factors.

where E is total emission, EF emission factor, k operation mode 
and i pollutant (Kuzu et al., 2021).

(10)Ei, = ∑ FC ∙ EF
k
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Figure 1.
Ship power distribution system (Adapted from Cahyagi and Koenhardono, 2018, Oways, 2019).

Figure 2.
The algorithm scheme of the mathematical model.
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Table 2.
EF of MGO (g emission/ g fuel) (Kuzu et al., 2021; Trozzi, 2010; IMO, 2014).

Pollutant CO2 CH4 N2O NOx NMVOC CO PM10 SO2

EF MGO 3.206 0.00006 0.00015 0.0961 0.00308 0.00277 0.00097 0.01

EF HFO 3.114 0.00006 0.00015 0.0903 0.00308 0.00277 0.00278 0.025

2.2. Performance Evaluation Model 

Error rate is the correlation between the actual value 
and the model's output that can be used to assess the model's 
performance. The validity and performance of the marine diesel 
generator model have been assessed using mean absolute error 
(MAE) as a relevant, understandable and reliable method (Chai 
& Drexler, 2014; Willmott & Matsuura, 2005). MAE is a metric 
that evaluates the discrepancy between real and anticipated 
values without taking direction into account. Therefore, lower 
MAE indicates better prediction performance (Chai & Drexler, 
2014). Regression algorithms have been evaluated using MAE, 
correlation score (R2 ) and root mean squared error (RMSE). The 
comparison of three evaluation metrics improves assessment 
reliability to avoid overfitting. R2 is a well-known performance 
measurement metric that evaluates the strength of a relation in 
regression. It ranges from 0 to 1, with higher R2 being indicative 
of better performance (Kasuya, 2019). RMSE is used to validate 
MAE for regression performance measurement purposes. Eq. 
11, Eq. 12, and Eq.13 are the equations for MAE, RMSE, and R2, 
respectively.

(11)MAE = 
∑i=1 | yp - yt |

n

n

(12)RMSE = √ 
∑i=1 ( yp - yt ) 2

n

n

(13)R2
 =

∑i=1 ( yt - y ) 2

∑i=1 ( yp - yt ) 2

n

n

where n is the total number of data, yp calculated or 
predicted value, yt real or true value and ¯y mean of the data. 
(Chai & Drexler, 2014; Kasuya, 2019).

2.3. Ship Power Plant Simulation Validation

Various performance measures can be used to assess 
model validation. These performance criteria have been derived 
both from real data obtained from a ship, and determined 
using the mathematical model. As a result, performance was 
tested by comparing calculated and real values. Figures 3. a, 3. 
b, and 3. c illustrate power-sharing based on total system load, 
as determined by parallel running tests on each generator. 
Generator 1 (Fig 3.a), Generator 2 (Fig 3.b), and Generator 3 (Fig 
3.c) have MAEs of 0.0168, 0.0095, 0.0102 respectively for this 
indicator, all of which are small error rates. For generators 1, 
2 and 3, Fig 4. a, Fig 4. b and Figure 4. c show the comparison 
between frequency decrease due to increasing load measured 
by governor tests and the frequency computed by the model. 
The MAEs of frequency calculations for generators 1, 2 and 3 are 
0.0034, 0.0039, and 0.004, which is within acceptable limits for 
this assessment. Fig 4. d illustrates system frequency decrease 
depending on varying total system load. The parallel running test 
in ship trials starts with a stable system frequency of 60 Hz. Since 
the model initially ignores stabilization mechanisms, the system 
frequency computation error rate is slightly higher, with MAE of 
0.0099. Fig 5. compares real and calculated power of synchronous 
generators as armature current increases. This benchmarking has 
the MAE of 0.000325, which is an acceptable error rate. Fig 5. b is 
a comparison between calculated and actual line voltages in the 
function of increasing armature current. As MAE in this analogy 
is 0.0035, model line voltage prediction can be assumed to be 
acceptable.
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Figure 3.
Comparison of measured and calculated power in correlation with varying system loads (a) generator 1 (b) generator 2 
(c) generator 3.

Figure 4.
Validation analogy between measured and calculated frequency in correlation with increasing generator power (a) 
generator 1 (b) generator 2 (c) generator 3 (d) system.
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Figure 5.
Validation analogy between measured and calculated (a) power and (b) line voltage as armature current increases.

2.4. Fuel Consumption Prediction

The mathematical model computed the plant’s FC in the 
designated period. For future estimations, some regression 
techniques have been trained based on the data. However, the 
data vary depending on the working hours of the generator. Data 
standardization is ensured to improve performance and reduce 
computation time for complicated methods. Standardization is a 
scaling method that provides the mean of zero and the standard 
deviation of one by first subtracting each data point (x) from the 
mean of data (¯x) and then dividing the standard deviation (σ). 
Eq. 14 explains the process (Trebuňa et. al., 2014). Transformed 
and scaled data have 13268 rows and are split into 80 % train 
and 20 % test sets. The data split configuration is obtained from 
trials of various split combinations. According to results, the 80-
20 split not only provides the optimum amount of data to test 
the model, but also a large quantity of training data. Regression 
models are trained with training data evaluated with test data 
using evaluation metrics. The optimum model is identified and 
future fuel consumption predictions ensured. Fig 6. illustrates the 
FC estimation process. 

(14)z = 
x - x

σ

Techniques suitable for plant FC estimation are as follows:
• Ordinary least squares (OLS) regression
• Auto-regressive integrated moving average (ARIMA)
• Support vector regression (SVR)
• ANN

OLS is a type of generalized linear regression that can be 
used to model a single response variable that has been recorded 
on a scale of at least one gap (Craven and Islam, 2011). OLS deals 
with the correlation between dependent and independent 
variables. The value of the dependent parameter is obtained 
using the linear correlation between independent parameters 
plus error rate (e). Eq. 15 shows the OLS formula.

(15)y = β0 + β1 X1 + β2 X2 + βk Xk + e

where β is the regression coefficient, X independent 
variable and y estimated value (Pohlman and Leitneri 2003).

ARIMA is a well-known statistical approach to predicting 
time-related data. ARIMA(p, d, q) can be defined as a linear 
combination of past values of yt and e. Eq. 16 shows the 
formulation of the ARIMA.
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Figure 7.
ANN structure.

Figure 6.
FC estimation process.

(17)minw        ||w|| 2
1

2
(16)

yt= φ0 + α1 · yt-1 - m1 · et-1 + α2 · yt-2 - m2 

· et-2 +...+ αp · yt-p - mp · et-q + et

where p, d, and q are ARIMA orders, α and m estimated 
regression weights, and φ0 trend member (Mills, 2019). Optimal 
model orders for each data set are identified by computing 
Akaike Information Criteria (AIC) and Bayesian Information 
Criteria (BIC) using an iterative algorithm. The algorithm iterated 
every combination of p, q, d within the specified limits. The p 
and q range was 1-5, while d range was 1-3. These limits depend 
on autocorrelation and partial autocorrelation plots. Algorithm 
results suggest that ARIMA (0,2,2) is the ideal model for the data.

SVR determines the acceptable error in the model, as well as 
the optimal data fitting line. The purpose of the objective function 
is to minimize coefficients and constraints. The approximation of 
magnitude of the normal vector ( || w || ) is given in Eq. 17 (Awad 
and Khanna, 2015)  

ANN is one of the deep learning algorithms and is widely 
used in both classification and regression problems. The Python 
trial results helped identify the number of layers, neurons, 
activation function, batch size, epochs and optimizer. Rectified 
linear unit (Relu) performs best with the data compared to other 
activation which can be defined as y=max (0, x). Since the data 
are free of complex patterns or large bias, more basic activation 
functions like Relu can be applied and reduce the ANN training 
time (Dreyfus, 2005). The Adam optimizer is used for network 
creation due to its computational efficiency, easy implementation 
and suitability for large datasets (Kingma and Ba, 2014). Epochs 
are 50 and batch size is 10 in the model. Figure 7 depicts ANN 
structure.
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3. RESULTS AND FINDINGS

The mathematical model calculated the FC of the marine 
diesel generator plant in different ship operation modes between 
December 6, 2019 and June 7, 2021. Fig 8 illustrates total FC and 
FC by operation modes in metric tons. Air pollutants from the 
operations were calculated using FC and emission factors shown 
in Table 2. Table 3 gives emission production in each operation 
mode in metric tons. 65 % of plant operations occurred during 

navigation and the rest were in harbor and port areas since the 
ship’s routes in the period examined involved many oceangoing 
voyages. Even though cargo handling operations require the 
highest electrical load, they accounted for only 4 % of utilization 
time and had the lowest fuel consumption of all operations. Fig 
9 illustrates the plant’s utilization time distribution by  mode 
of operation. The plant produces 8,592.38 t of CO2,  which is 
remarkable compared to other pollutants. NOx and SO2 are the 
second and third highest generated pollutants, respectively.

Figure 8.
Total generator FC by operation mode.

Figure 9.
Plant utilization time distribution by operation mode.
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Table 3.
Emissions from marine diesel generators by operation mode.

Figure 10.
FC of the plant by working hours.

Operation CO2 CH4 N2O NOx NMVOC CO PM10 SO2

1 2,594.07 0.05 0.12 75.22 2.57 2.31 2.32 20.83

2 2,942.83 0.06 0.14 85.34 2.91 2.62 2.63 23.63

3 1,165.24 0.02 0.05 34.93 1.12 1.01 0.35 3.63

4 675.51 0.01 0.03 20.25 0.65 0.58 0.20 2.11

5 577.95 0.01 0.03 17.32 0.56 0.50 0.17 1.80

6 636.79 0.01 0.03 19.09 0.61 0.55 0.19 1.99

Total 8,592.38 0.16 0.41 252.15 8.41 7.57 5.87 53.98

The simulation computed FC by operation mode and total 
operating hours. The data were transformed hourly to prepare 
them for regression analysis. Fig 10 shows hourly FC increments of 
the plant over the period of 13,268 hours. The figure demonstrates 
that there are linear relationships between the data and that the 
models’ R2 scores are high as expected. Four regression models, 
from basic to complex, were adjusted to the data. An attempt 
was made to use other linear regression algorithms, such as 
Ridge, Lasso and Elastic Net, with their parameter optimization 
ending with OLS. Figure 11, 12, 13, and 14 are a comparison 
between actual (test data) and predicted values, evaluation 

metrics and one-year predictions of each regression algorithm. 
As anticipated, R2 scores were higher for each model, with OLS 
achieving the highest R2 of 0.9992. OLS had the lowest MAE and 
RMSE metrics of 3.932 and 2.935 respectively. 

Figure 11 shows that OLS has the best curve overlap of all 
the methods applied. Lower MAE and RMSE values also support 
this. However, in spite of OLS being the fastest and the most 
straightforward method, towards the end, the predicted value 
line is higher than the actual value line, i.e. predicted values 
obtained are higher than those obtained by other techniques.
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Figure 11.
Comparison of test data and predicted values, evaluation metrics, and one-year prediction using OLS.

Figure 12.
Comparison of test data and predicted values, evaluation metrics, and one-year prediction using ARIMA (0, 2, 2).

A similar phenomenon can be seen in Figure 12 for ARIMA 
(0,2,2). In spite of having the highest MAE, successful curve 
overlap can be observed. Nevertheless, in the second part of 
the data, its predicted value curve is lower than the actual value 
curve and thus yields lower future forecasts. In addition, ARIMA’s 
running time is the second-highest after ANN.

SVR’s MAE and RMSE are particularly higher, especially at 
the beginning of the data set. In the second part of the data set, 

SVR gives a perfect overlap which seemingly suggests better 
predictions, however, MAE and RMSE values obtained are slightly 
higher compared to other regression techniques. 

Even though it is a complex methodology, the 
computation time of the SVR model dramatically drops with data 
standardization. 



TRANSACTIONS ON MARITIME SCIENCE 91Trans. marit. sci. 2022; 01: 79-94

Figure 13.
Comparison of test data and predicted values, evaluation metrics, and one-year prediction using SVR.

Figure 14.
Comparison of test data and predicted values, evaluation metrics, and one-year prediction using ANN.

ANN, on the other hand, has a high R2 score, and its future 
predictions and other evaluation metrics are decent. Figure 14 
shows the curve overlap, metrics and predictions obtained 
with ANN. ANN seems not to be the optimal choice from this 
data set. Its computation time is the highest by far and is better 
suited to more complex datasets with multiple inputs and 
uncertainty. For this particular dataset, OLS is preferable to other 
prediction methods owing to its superior performance metrics 

and computation time. One year later, following the expiry of the 
period observed, the plant’s total FC predicted by the OLS model 
is 4,322,436 t. Five-year and ten-year predictions are 10,684.86 
and 18,615,472 t, respectively. Table 4 shows emission predictions 
for these periods based on estimated data to highlight the 
environmental effect of the plant. The emission calculation of the 
forecasted FC is based on the assumption that the route of the 
ship will remain the same.
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Table 4.
OLS emission forecast.

Pollutant 1-year forecast (t) 5-year forecast (t) 10-year forecast (t)

CO2 13,599,249 33,616,707 58,567,998

CH4 0.259 0.641 1,117

N2O 0.648 1.603 2,792

NOx 399,091 986,533 1,718, 767

NMVOC 13,313 32,909 57,336

CO 11,973 29,597 51,565

PM10 9,278 22,935 39,958

SO2 85,368 211,026 367,656

4. CONCLUSION AND DISCUSSION

The research examined the FC and emissions of a ship 
power plant through mathematical modelling. The numerical 
simulation calculated FC based on the data obtained from an 
oceangoing oil-chemical tanker. The study focused on marine 
diesel generators due to their major adverse environmental 
impact, especially in port and harbor areas. In addition, ships 
powered by two-stroke main engines use at least one diesel 
generator during navigation,  resulting in continuous emissions 
by the plant. Between 6 December 2019 and 7 June 2021, model 
outputs have shown that the plant has produced 8,592.38 t of 
CO2 , 252.15 t of NOx , and 53.98 t of SO2 . These values indicate 
substantial emissions even from a single ship plant. Even though 
IMO takes measures to reduce NOx and SO2 , CO2 reduction seems 
impossible without abandoning fossil fuels. To highlight the 
issue more efficiently, regression models were used to forecast 
future FC levels. Four different regression algorithms, suitable 
for the data, were trained and compared. The analogy identified 
OLS as the most suitable FC forecasting regression model for the 
current data. Although the other three algorithms performed 
successfully in terms of computation time, evaluation metrics 
and curve overlap quality, OLS is the optimal choice. One, five and 
ten-year forecasts obtained by OLS application to periods after 7 
June 2021 showed that the plant’s CO2 production capacity was 
58,567,998 t. This quantity of emissions has a significant impact 
on air pollution, especially given that they were generated by a 
single ship’s auxiliary engines. Though promising,  green ports 
supplying ships with electricity only prevent air pollution in the 
urban area, and their development is still an ongoing process. 
Short-term onboard solutions include plant hybridization using 
alternative energy sources or waste heat energy. Their installation 
and usage can be faster and would help reduce emissions from 
marine diesel generators. Long-term solutions include the usage 

of alternative fuels and energy approaches onboard. However, 
they are still ongoing projects that need to be improved to be 
efficiently implemented on ships. Future studies will focus on 
battery additions to the plant and battery charging strategies 
due to their faster applicability. 
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