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Identifying Factors of Dynamic 
Positioning Incidents through 
Association Rule Mining 
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Accidents in the offshore industry can have severe repercussions for people, cargo, vessels, and the 
environment, making maritime safety a crucial concern. Dynamic positioning incidents, particularly those 
involving loss of position, represent a significant risk. This study employs association rule mining to analyze DP 
incident data, leveraging its strength in discovering robust associations. Using the Apriori algorithm, the analysis 
identifies strong association rules for loss of position (drift-off, drive-off) and loss of redundancy situations. The 
findings reveal event-related variables and potential causal relationships, providing insights and guidance for 
reducing the risk and occurrence of future DP incidents through stringent and targeted safety measures. 
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1. INTRODUCTION 

Dynamic Positioning (DP) systems play a pivotal role in the offshore industry by automating vessel 
position and heading control. The offshore oil and gas sector significantly impacts national energy security and 
economic stability, making reliable DP systems essential. These systems are installed on offshore vessels 
engaged in DP operations, which may occasionally experience loss of position (LoP) incidents. While DP system 
is hailed as a technological boon, ensuring vessels maintain specific positions and headings automatically; they 
still require vigilant monitoring by certified and competent Dynamic Positioning Operators (DPOs). 

The importance of analyzing DP incidents and identifying probable causal links cannot be overstated. 
This study thoroughly investigates the causes of DP incidents using association rule mining, specifically 
employing the Apriori algorithm within the Weka software developed by the University of Waikato. 

The primary objective of this paper is to identify the main causes contributing to DP incidents through a 
statistical analysis followed by the Apriori algorithm and association rule mining. The study utilizes data from the 
International Maritime Contractors' Association (IMCA) database and annual reports on DP incidents, which 
collectively offer a comprehensive collection of 1352 incidents and undesired events over the period from 2004 
to 2021. This research reveals strong association rules, investigates potential interactions between components, 
and provides solutions and recommendations to reduce the number of DP incidents. 

Research on dynamic positioning (DP) incidents remains limited, with only a few studies providing 
statistical analyses. Current research on maritime accidents predominantly focuses on human factors and 
specific ship types. Techniques such as the Analytical Network Process (ANP) and the Human Factor Analysis 
and Classification System for Maritime Accidents (HFACS-MA) have been employed to examine these factors 
(Akyuz, 2017; Chen et al., 2013), highlighting the significant role humans play in marine accidents. 

Additionally, location-specific studies examine marine accidents in particular regions. Raiyan et al. 
(2017) used Event Tree Analysis (ETA) to show how combined factors can cause accidents. Erol et al. (2018) 
used neuro-fuzzy methods to investigate accidents in the Strait of Istanbul. Ozaydin et al. (2022) proposed a 
hybrid model combining Bayesian Network (BN) and Association Rule Mining (ARM) to analyze marine 
accidents, revealing minimal requirements for fishing vessel accidents. Weng and Li (2019) examined 
contributory factors in 66 shipping accidents in Fujian waters. 

In the realm of DP incidents, Ismail et al. (2014) used descriptive statistics to analyze 219 incidents, 
emphasizing the importance of crew training, discipline, and continuous maintenance. Overgard et al. (2015) 
studied critical incidents during DP operations, providing insights into the human factors involved such as 
situational awareness and decision-making of DPO. Hauff (2014) used Bayesian belief network analysis to 
investigate LoP incidents. Azad (2014) presented a criticality analysis of platform supply vessels, identifying 
potential DP accident causes. Chae (2017) applied formal safety assessment (FSA) techniques to human errors 
and accidents involving DP vessels. 

Pil (2018) investigated the causes of DP system malfunctions, identifying control and feedback systems 
as main contributors to propulsion system failures. Olubitan and Loughney (2018) conducted a statistical 
analysis of DP-related incidents from 2000 to 2016, revealing an increase in incidents during spring and summer, 
with Diving Support Vessels (DSVs), pipe lay, and drill ships involved in the most incidents. Reference and 
thruster systems were the leading causes. 

Sanchez et al. (2021) used binary logistic regression modeling to predict LoP incidents during drilling 
operations, calculating the probability of deviations from desired positions. Chae and Jung (2015) examined 612 
LoP incidents from 2001 to 2010, identifying PRS errors as the leading cause, followed by DP computer, power 
system, human error, and thruster systems. 
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Few studies have focused on strong association rules for DP incidents. This study aims to fill that gap 
by examining factors contributing to DP incidents, such as loss of position (LoP) and loss of redundancy (LoR) 
incidents. It provides specific rules and valuable insights into the relationships between these variables, 
potentially enhancing safety measures in DP vessel operations. 

2. METHODOLOGY 

2.1. Association Rule Mining Analysis 

Association rule mining (ARM) is an effective method for identifying significant relationships concealed 
within large datasets. To understand the causes and effects of DP incidents and the relationships between 
antecedents and consequents, ARM was applied using Weka open-source machine learning software. These 
relationships are typically defined by strong association rules. Through this study, preventive measures can be 
developed to reduce the number of DP incidents by relying on strong association rules that highlight the factors 
contributing to those incidents.  

The Apriori algorithm, integrated into the Weka program, was employed for association rule mining. 
Weka, a comprehensive machine-learning workbench, provided a user-friendly interface for dataset analysis. 
The Apriori algorithm, first introduced by Agrawal and Srikant (1994), is one of the most recognized and widely 
used algorithms in this domain. Its primary objective is to generate association rules characterized by high 
confidence levels, which indicate the accuracy and reliability of the rules.  Apriori is used to uncover complex 
associative relationships between factors, extracting frequently occurring patterns from large datasets to identify 
common item sets and associations among different item sets. By revealing these relationships, the study aims 
to inform the development of preventive measures to mitigate DP incidents effectively. 

While the method provides valuable insights due to its flexibility and simplicity, it also presents notable 
computational challenges and limitations. Practical application requires careful interpretation and consideration 
of dataset characteristics, threshold settings, and computational resources. 

An analytical description of the association rule can also be defined in the form (Agrawal and Srikant, 
1994); 

X⇒Y, where X, Y⊆I, X∩Y=∅. The association rule X→Y suggests that the occurrence of Y is dependent 
on the occurrence of X. In the context of association rules, X is referred to as the antecedent, representing the 
item(s) that precede the occurrence of other item(s) denoted as Y, which is known as the consequent. 

The support of the association rule X⇒Y reflects the probability that item X and item Y happen together 
simultaneously (in the entire data set). The support of an association rule is quantitatively defined as the ratio of 
the number of transactions in the entire dataset that contain both X∪Y, to the total number of transactions in the 
dataset. This may be mathematically represented as: 

Support (X) = ||{t ∈ D | X ⊆ t }||/||{t ∈ D}|| 

Support (X∪Y) ≥ minimum support (threshold) 

Support is the frequency of occurrence. In example, if the support is 20%, (x) and (y) occur together in 
20% of the cases. 

The confidence of the conditional probability that item Y will happen on the condition that item X 
happens. It is called conditional probability. This may be mathematically represented as: 
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Confidence (X⇒Y) = support (X∪Y) / support (X) 

Confidence (X∪Y) ≥ minimum confidence (threshold) 

Figure 1 provides a comprehensive summary of the methods used to calculate support and confidence 
values. 

 

Figure 1. Analytical description of support and confidence (Source: Cakir et al., 2021) 

Since there are a great number of these association rules that meet the criteria of support and 
confidence, filtering and ranking of found rules are provided by the ‘lift’ factor. Lift displays the confidence of 
the rule to the past likelihood of subsequent, and it is the result of dividing rule confidence by rule support. It is 
used to measure the importance of a rule. The lift of an association rule can be shown in the form of: 

Lift (X⇒Y) = support (X∪Y) / (support (X) support (Y)) 

Generally, the higher the lift results, the stronger the association between the items. The result of the lift 
factor is supposed to be higher than 1. When the lift value is equal to 1, it indicates that there is no association 
of between variables X and Y. When the lift value exceeds 1, it indicates a positive correlation between variables 
X and Y. However, in the event that the lift value remains below 1, it indicates the presence of a negative 
association between the elements, suggesting that they are unlikely to occur together. 

The user specifies a minimal support threshold, denoted as min_sup, and a minimum confidence 
threshold, denoted as min_conf, before conducting the process of association rule learning. The set of item sets 
with a support value greater than or equal to the minimal support threshold, referred to as “a frequent item” or 
large itemset, is denoted as Lk. It represents the collection of all frequent k-item sets. 

The association rule learning process consists of two distinct stages. In the initial phase, the algorithm 
identifies all the frequent item sets that possess a support value that is higher or equal to the specified minimum 
support threshold, denoted as min_sup. During the second step, the system produces association rules, 
computes their confidence levels, and selects association rules that have a confidence level that is higher or 
equal to the specified minimum confidence thresholds, denoted as min_conf. 

The Apriori algorithm is a well-established method used in the field of data mining for the purpose of 
identifying frequent item sets in association rule mining. The technique employs an iterative approach known as 
layer-by-layer search, where k-item sets are utilised to investigate (k+1) items. Firstly, the algorithm identifies a 
collection of frequently occurring 1-itemsets. The set is represented by the symbol L1. L1 is used to identify the 
collection of frequent 2-itemsets, denoted as L2, and subsequently, L2 is utilised to discover L3, and this process 
continues iteratively until the frequent k-item sets can no longer be ascertained.  

Conviction is further employed as a metric to assess the degree of independence between variables X 
and Y. The concept of conviction involves assessing the likelihood of event X occurring independently of event 
Y by comparing it to the observed frequency of event X occurring without event Y. In contrast to the confidence 
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metric, conviction considers both X and Y and consistently assumes a value of 1 when the corresponding items 
are entirely unconnected. Therefore, if the conviction value is 1 or close to 1, it is understood that X and Y items 
are completely unrelated. 

2.2. Workflow of Association Rules Learning on DP Incidents 

Workflow for association rule learning on DP incidents encompasses several key stages: data 
preparation and cleaning, rule modeling, frequent itemset creation, and the generation and analysis of strong 
association rules comprise the association rule learning process for DP incidents (Huang and Shenping, 2019), 
as shown in Figure 2.  

 

Figure 2. Association rule learning process for DP incidents (Source: Huang et al., 2019) 

2.2.1. Data Collection and Preparation 

Data collection and preparation involve three main stages: data selection, data processing and data 
transformation. The data used in this study were sourced exclusively from the IMCA, which is the primary 
organization that collects and shares records of DP incidents. This reliance on IMCA data represents a limitation, 
as it excludes data from other potential sources that might offer a broader perspective on DP incidents. 
Consequently, the findings are based solely on the dataset provided by IMCA, which may not fully encompass 
all incidents occurring within the industry. This limitation should be considered when interpreting the results and 
conclusions of this study. 

The technique of data pre-processing involves the removal of missing data as well as the generation or 
deletion of duplicate records. The primary objective of data transformation is to identify and extract meaningful 
features from the dataset, aligning with the specific goals of the work at hand, in order to effectively portray the 
data. The IMCA database provided a dataset comprising 1,352 DP incidents that occurred between 2004 and 
2021. This was examined and sorted according to the primary cause and incident year. The categorisation is 
highlighted in Table 1.  
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Table 1. Main causes of DP incidents occurred between 2004-2021 (Source: IMCA, 2022) 

As evidenced in Table 1, the data indicates that thrusters/propulsion failures have been the primary 
cause since 2012. Secondly, computer and power-related incidents have been identified as other significant 
main causes. Furthermore, empirical evidence demonstrates a gradual increase in the overall number of DP 
incidents during the last decade. Furthermore, Figure 3 illustrates the trend for the main causes of DP incidents 
over the last 18-year period (2004 to 2021). 

 

Figure 3. Trend for the main causes of DP incidents between 2004 and 2021. (Source: Authors, 2022) 

Table 2 provides a comprehensive overview of DP incidents, categorized by the type of ship and 
operation, from 2004 to 2021. The data indicate that DP incidents predominantly occur during specific types of 
operations. The highest percentage of incidents is attributed to diving operations, at 17.3%, followed closely by 
drilling operations at 16.4%. Additionally, Remotely Operated Vehicle (ROV) operations constitute a significant 
portion of DP incidents, with 14.6%. 
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Type of Ship/Operation Number of Incidents Percentage (%) 

Diving 130 17.3% 

Drilling 123 16.4% 

ROV 110 14.6% 

Cargo 94 12.5% 

Pipe lay 58 7.7% 

Stand by 42 5.6% 

Offshore Load/Offtake 39 5.2% 

Cable lay 20 2.7% 

Other 136 18.1% 

Table 2. DP incidents as per operation type (between 2004 and 2021). (Source: Authors, 2022) 

Cargo operations are responsible for 12.5% of the incidents, highlighting their substantial role in the 
overall distribution of DP incidents. While pipe lay operations are less frequent, they still represent a notable 
7.7% of the incidents. Other types of operations, including stand-by operations (5.6%), offshore load/off take 
operations (5.2%), and cable lay operations (2.7%), contribute smaller percentages to the total number of 
incidents. 

Lastly, a diverse range of other operations collectively accounts for 18.1% of DP incidents. This 
distribution underscores the variability and complexity of DP operations across different types of ships and 
operational contexts. The data suggest that while certain operations like diving and drilling are more prone to 
DP incidents, all types of DP operations require careful monitoring and risk management to mitigate potential 
incidents. 

The attributes selected for this analysis are crucial for understanding DP incident causes and contexts. 
Each record includes several attributes that describe various aspects of the incidents. The attributes used in this 
analysis are shown in Table 3. 

Attributes Explanation 

Root cause The trigger factors (variable root causes) 

Secondary cause Contributing factors that may have exacerbated the incident (Table 1) 

Main cause The main cause of incident (Table 1) 

Incident type The nature of incident; (LoP (drift-off, drive-off), LoR) 

PRS usage Information about the use of different source type of PRS during the incident; (Yes/No) 

Ship/Operation type 
Type of DP vessel or operation at the time of incident 

(e.g., diving, drilling, ROV operations) 

Table 3. Attributes utilized in Weka for ARM (Source: Authors, 2022) 

2.2.2. Data Cleaning 

The IMCA database contains a substantial volume of data, some of is incomplete or duplicate, which 
impedes its use for analysis. To enhance the accuracy of the association rules, missing or duplicate data were 
removed. After filtering, 752 DP incidents with sufficient data were identified for further analysis. The Apriori 
algorithm was applied using 691 attributes, ensuring data integrity and appropriate algorithm settings. A 
summary of DP incidents is shown in Table 4. 
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Loss of Position 
(LoP) incidents (385) 

Loss of Redundancy 
(LoR) incidents (367) 

Drift off Drive off LoR (367) 

324 (%84) 61 (%16) (%48) 
 

Table 4. Summary of DP incidents (Source: Authors, 2022) 

2.2.3. Modelling of Association Rules Learning 

A causation model of DP incidents has been developed, incorporating key factors such as main and 
secondary causes, root causes, incident type (drift-off, drive-off, LoR), PRS usage, and operation type. The 
analysis model of DP incidents is presented in Figure 4. 

 

Figure 4. Association rule analysis model of DP incidents (Source: Authors) 
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2.2.4. General of Frequent Item Sets 

The initial step involves generating the candidate set Ck, which comprises items that could become 
frequent item sets. Support values are calculated for these candidate sets to determine the frequent itemset Lk. 

2.2.5. Generation of Strong Association Rules 

Association rules are constructed from frequent item sets based on user-specified minimum confidence 
levels. Strong association rules are those that exceed these thresholds. In this study, the minimum support level 
was set to 10%, and the minimum confidence level to 60%. 

3. ANALYSIS AND DISCUSSIONS OF STRONG ASSOCIATION RULES 

Analyzing DP incident data using association rules allows for a quantitative examination of individual 
accident causation factors and attributes while addressing the challenge of uncovering multi-factor associations-
something that traditional mathematical analysis methods often struggle with. The identified strong association 
rules are examined to highlight their internal connections with DP occurrences and incident causes. 

This method effectively resolves the complex task of multi-factor connection mining, allowing for the 
precise and scientific excavation of relationships between DP incident causation factors and attributes. The 
findings are objectively presented in the further section. 

This section presents the strongest association rules and their relevant points. Tables 5, 6, 7, 8, and 9 
display the strong association rules for potential DP incidents, showing the antecedents (on the left-hand side) 
and consequents (on the right-hand side), based on the highest confidence values. In the Weka Apriori algorithm 
calculations, a total of 691 attributes were employed to maintain data integrity and adhere to the algorithm’s 
settings. 

Table 5 provides a broad overview of general causes and their impact on incidents, illustrating the 
strongest association rules for DP incidents. This demonstrates the causal relationship between antecedents, 
such as secondary and root causes, and consequents, including main causes and incident types. This analysis 
identifies the root causes that trigger the main factors in the occurrence of DP incidents. 

Rule Antecedent Consequent Confidence Lift Conviction 

1 Root_Cause= Feedback failure Main_Cause= Thruster/Prop 1.0 3.65 31.22 

2 Root_Cause= Thruster trip Main_Cause= Thruster/Prop 1.0 3.65 29.04 

3 Root_Cause= DGNSS degraded Main_Cause= PRS 0.96 5.68 12.48 

4 Sec_Cause= Software failure Main_Cause= Computer 0.86 6.12 5.28 

5 Main_Cause= Environment Drift off 0.81 1.9 2.7 

6 Root_Cause= Control system failure Main_Cause=Thruster/Prop 0.77 2.8 2.84 

7 Main_Cause= Human factor Drift off 0.76 1.78 2.23 

8 Sec_Cause= Human factor Drift off 0.74 1.74 2.12 

9 Sec_Cause= Electrical failure LoR 0.74 1.51 1.87 

Table 5. Strong association rules (1) for DP incidents (Source: Authors) 

Rule 1 indicates that feedback failures are strongly associated with thruster/propulsion issues, with a 
confidence of 1.0, a lift of 3.65, and a conviction of 31.22, implying a very reliable rule. Similarly, Rule 2 shows 
that thruster trips also invariably lead to thruster/propulsion issues, with identical confidence and lift values and 
a slightly lower conviction of 29.04. Rule 3 demonstrates that when Differential Global Navigation Satellite 
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System (DGNSS) is degraded, the main cause is a Position Reference System (PRS) failure, with a high 
confidence of 0.96, a lift of 5.68, and a conviction of 12.48, indicating a strong relationship. Rule 4 reveals that 
software failures as a secondary cause frequently lead to computer-related issues, with a confidence of 0.86, a 
lift of 6.12, and a conviction of 5.28. Environmental factors as the main cause (Rule 5) result in drift-off incidents 
with a confidence of 0.81, a lift of 1.9, and a conviction of 2.7. Rule 6 highlights that control system failures often 
lead to thruster/propulsion issues, with a confidence of 0.77, a lift of 2.8, and a conviction of 2.84. Rules 7 and 8 
indicate that human factors, both as main and secondary causes, are significantly associated with drift-off 
incidents. The confidence levels are 0.76 and 0.74, respectively, with corresponding lift values of 1.78 and 1.74, 
and conviction values of 2.23 and 2.12.  

Next, Tables 6 and 7 provide a detailed examination of specific failures and their immediate outcomes 
in DP incidents. These tables present the strongest confidence values associated with various consequences of 
DP incidents, such as LoP (drift-off, drive-off) and LoR. They also identify the types of root and secondary causes 
that serve as antecedents to these outcomes. 

Rule Antecedent Consequent Confidence Lift 

1 
Root_Cause= Sudden changes/Current 

Sec_Cause= Human factor 
Drift off 1.0 2.35 

2 
Root_Cause= Press standby button 

Sec_Cause= Human factor 
Drift off 1.0 2.35 

3 
Root_Cause= Thruster trip 

Sec_Cause= Electrical failure 
LoR 1.0 2.04 

4 
Root_Cause= Auxiliary System failure 
Sec_Cause= Auxiliary System failure 

LoR 1.0 2.04 

5 
Root_Cause= OS failure 
Sec_Cause= OS failure 

LoR 0.9 1.84 

6 
Root_Cause= Control system failure 

Sec_Cause= Electrical failure 
LoR 0.9 1.83 

7 
Root_Cause= Pressing button by mistake 

Sec_Cause= Human factor 
Drift off 0.8 1.88 

8 
Root_Cause= Feedback failure 
Sec_Cause= Electrical failure 

LoR 0.8 1.63 

9 
Root_Cause= Thruster trip 
Sec_Cause= Thruster trip 

LoR 0.77 1.58 

10 
Root_Cause= Control system failure 
Sec_Cause= Control system failure 

LoR 0.71 1.45 

11 
Root_Cause= Lack of knowledge 

Sec_Cause= Human factor 
Drift off 0.71 1.66 

12 
Root_Cause= Electrical failure 
Sec_Cause= Electrical failure 

LoR 0.70 1.42 

Table 6. Strong association rules (2) (Source: Authors) 
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Rule Antecedent Consequent Confidence Lift 

1 
Root_Cause= Incorrect command 

Main_Cause= Human factor 
Drift off 1.0 2.35 

2 
Root_Cause= Press standby button 

Main_Cause= Human factor 
Drift off 1.0 2.35 

3 
Root_Cause= Sudden changes/Current 

Sec_Cause= Human factor 
Main_Cause= Environment 

Drift off 1.0 2.35 

4 
Sec_Cause= Human factor 
Main_Cause= Environment 

Drift off 1.0 2.35 

5 
Root_Cause= Squalls 

Main_Cause= Environment 
Drift off 1.0 2.35 

6 
Sec_Cause= Environment 

Main_Cause= Thruster/Propeller 
Drift off 1.0 2.35 

7 
Root_Cause= Control system failure  
Sec_Cause= Control system failure   

Main_Cause= Power 
LoR 1.0 2.04 

8 
Root_Cause= Thruster trip 

Sec_Cause= Electrical failure 
Main_Cause= Thruster/Propeller 

LoR 1.0 2.04 

9 
Root_Cause= Auxiliary System failure 

Main_Cause= Thruster/Propeller 
LoR 1.0 2.04 

10 
Root_Cause= Fuel system failure 
Sec_Cause= Fuel system failure 

Main_Cause= Power 
LoR 1.0 2.04 

11 
Root_Cause= Mechanical failure 
Sec_Cause= Mechanical failure 
Main_Cause= Thruster/Propeller 

LoR 1.0 2.04 

Table 7. Strong association rules (3) (Source: Authors) 

The findings provided in Table 7 indicate that human factors and environmental conditions play crucial 
roles and exert substantial influence on the loss of position in DP vessels, leading to drift-off incidents. Key 
human factors include incorrect commands (Rule 1) and pressing the stand-by button inappropriately (Rule 2). 
Environmental factors such as sudden changes in current (Rule 3) and abrupt squalls (Rule 5) also contribute 
significantly to serious DP incidents, causing vessels to lose their heading and position, subsequently drifting 
off. Rule 5 shows that in the event of unexpected squalls impacting the vessel’s position, there is a significant 
likelihood of a drift-off incident. Therefore, maintaining continuous watchkeeping and monitoring meteorological 
conditions closely are crucial aspects of keeping DP watches. Additionally, it is recommended to incorporate 
meteorology training with DP operations, including procedures for responding to emergencies through diverse 
and severe weather conditions (squalls, solitons, currents, etc.), to ensure that all DPOs are adequately trained. 

Table 8 highlights the strong association rules that link various root causes to specific incident outcomes, 
emphasizing the factors that lead to drift-off and LoR incidents. The data indicates that drift-off incidents are 
commonly attributed to human error antecedents, such as pressing the standby button or any button by mistake, 
the issuance of incorrect commands, and a lack of requisite knowledge. These human factors underscore the 
need for enhanced training and operational procedures to mitigate such risks. 
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Rule Antecedent Consequent Confidence Lift 

1 Root_Cause= Squalls Drift off 1.0 2.35 

2 Root_Cause= Press standby button Drift off 1.0 2.35 

3 Root_Cause= Improper wiring Drift off 1.0 2.35 

4 Root_Cause= OS failure LoR 0.92 1.87 

5 Root_Cause= Swell/Wave Drift off 0.92 2.16 

6 Root_Cause= Thruster trip LoR 0.82 1.68 

7 Root_Cause= Sudden changes/Current Drift off 0.80 1.88 

8 Root_Cause= UPS failure LoR 0.80 1.88 

9 Root_Cause= Pressing button by mistake Drift off 0.79 1.87 

10 Root_Cause= Incorrect command Drift off 0.77 1.81 

11 Root_Cause= Hardware failure LoR 0.72 1.47 

12 Root_Cause= Control system failure LoR 0.70 1.43 

Table 8. Strong association rules (4) (Source: Authors) 

Next, Table 9 provides a visual representation of the strong association rules related to operation types, 
vessel types, and consequent incidents. The data highlights the significant role of human and technical factors 
in different operational contexts, illustrating how specific root causes and secondary causes lead to particular 
incident outcomes. 

Rule Antecedent Consequent Confidence Lift 

1 
Ops= Shuttle/FPSO 

Sec_Cause = Human factor 
Drift off 1.0 2.35 

2 
Ops= Shuttle/FPSO 

Root_Cause= Pressing button by mistake 
Drift off 1.0 2.35 

3 
Ops= Diving 

Sec_Cause= Blackout 
Main_Cause= Power 

Drift off 1.0 2.35 

4 
Ops= Diving 

Root_Cause= OS failure 
LoR 1.0 2.04 

5 
Ops= Cable/Pipe lay 

Sec_Cause= Human factor 
Drift off 1.0 2.35 

6 
Ops= Drilling 

Sec_Cause= Electrical failure 
Main_Cause= Thruster/Propeller 

LoR 1.0 2.04 

7 
Ops= Drilling 

Root_Cause= ThrusterTrip 
Main_Cause= Thruster/Propeller 

LoR 1.0 2.04 

8 
Ops= PSV/Cargo 

Root_Cause= Control system failure  
Sec_Cause= Electrical failure 

LoR 1.0 2.04 

9 
Ops= ROV 

Root_Cause= Control system failure  
Sec_Cause= Control system failure 

LoR 1.0 2.04 

10 
Ops= ROV 

Sec_Cause= OS failure 
Main_Cause= Computer 

LoR 1.0 2.04 

11 
Ops= PSV/Cargo 

Root_Cause= Hardware failure 
Main_Cause= Computer 

LoR 1.0 2.04 

12 
Ops= PSV/Cargo 

Root_Cause= Thruster trip 
Sec_Cause= Thruster trip 

LoR 1.0 2.04 

Table 9. Strong association rules (5) (Source: Authors) 
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The Table 9 illustrates the correlation between various operational scenarios and the resultant DP 
incidents. Specifically, it shows that human factors and technical failures are critical antecedents in different ship 
operations. For instance, in Shuttle/Floating Production Storage and Offloading (FPSO) operations, human 
errors such as pressing the standby button by mistake consistently lead to drift-off incidents, as shown by a 
confidence value of 1.0 and a lift of 2.35. 

In diving operations, blackouts and power-related issues are significant contributors to drift-off incidents, 
while Operating System (OS) failures predominantly result in LoR incidents. Cable/pipe lay operations also show 
a high incidence of drift-off incidents due to human factors. 

For drilling operations, electrical failures and thruster trips are primary causes leading to LoR incidents. 
Similarly, in Platform Supply Vessel (PSV)/cargo operations, control system failures and thruster trips are 
significant antecedents for LoR incidents. 

This analysis underscores the necessity for targeted preventive measures and enhanced training for 
personnel to mitigate human errors and technical failures, thereby improving the safety and reliability of DP 
operations across different vessel types and operational contexts. 

3.1 Key Findings 

3.1.1. Major Causes of DP Incidents 

The analysis reveals that the major causes of DP incidents are as follows: thrusters and propulsion-
related failures account for 24%, computer-related failures constitute 15%, power-related failures contribute to 
14%, PRS failures represent 13%, and human factor-related failures comprise 9%. 

3.1.2. Type of Operations during DP Incidents 

The analysis of the type of operations during DP incidents shows that diving operations account for 
17.3% of the incidents, drilling operations constitute 16.4%, ROV operations contribute to 14.6%, and cargo 
operations represent 12.5%. 

3.1.3. Role of Human Factor 

Human factors play a significant role in DP incidents, particularly in LoP incidents. In instances where 
human error is identified as the main cause, the consequence is an LoP incident in 87% of cases. Furthermore, 
if human error is identified as a secondary cause, the consequence results in an LoP incident in 88% of cases. 

3.1.4. Consequences of Specific Failures 

The consequences of specific failures were also analyzed. Power-related failures result in a 100% 
occurrence of LoP incidents. Similarly, thruster and propulsion failures lead to LoP incidents in 65% of cases. 

3.1.5. Triggers of DP Incidents 

Several triggers of DP incidents were identified. Pressing the wrong button or pressing a button by 
mistake triggers 55.2% of DP incidents. A lack of knowledge among DPOs contributes to 15% of incidents. 
DGNSS failures initiate 7.5% of DP incidents, while incorrect commands contribute to 6.6%, often related to 
personal experience and lack of knowledge. 
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3.1.6. DP Experience and Vessel Types 

According to the author's previous research on the qualifications of DPOs (Sahin et al., 2023), the DP 
experience gained on supply vessels and drill ships differs significantly in terms of content and the amount of 
DP hours practiced. While the fundamentals of DP operations remain consistent, specific techniques and the 
nature of tasks vary considerably among different types of offshore vessels. Additionally, the DP classification is 
crucial; pipe lay and drill ships are predominantly classified as DP3, whereas other types of DP vessels generally 
fall under DP2 or DP1. Therefore, acquiring additional skills and experience may be necessary for DPOs. 

3.1.7. Environmental Factors 

Environmental factors consistently lead to drift-off incidents in all observed cases, resulting in a 100% 
occurrence rate. Conditions such as squalls, sudden changes in current, and swells/waves play a critical role in 
causing drift-off incidents, as evidenced by their high confidence values and lift. These findings suggest that 
environmental factors must be closely monitored and managed to prevent DP incidents. 

3.1.8. Incident Outcomes by Operation Type 

During drilling operations, 90% of DP incidents result in LoP incidents. Similarly, during diving 
operations, 82% of DP incidents result in LoP incidents. Cargo operations on PSVs account for 31.1% of all LoP 
incidents observed during DP operations. 

3.1.9. Position Reference Systems 

Using different sources for PRS does not guarantee the prevention of LoP incidents. In cases where the 
initial failure is attributed to PRS, the consequences include drift-off incidents in 85% of instances.  

The results demonstrate that DP occurrences have a strong association with both human error and 
environmental factors. Particularly, there is a significant association between human factors (DPO fault) and LoP 
(drift off) incidents, as well as ship class/type (drill ships/operations). The accumulation of drift-off incidents 
occurred predominantly during major operations, including drilling (20%), ROV operations (13%), pipe lay-cable 
lay operations (13%), and diving operations (12.6%), collectively accounting for 58.6% of the total LoP (drift off) 
incidents during DP operations. 

4. CONCLUSION 

The objective of this study was to investigate the causes of DP incidents and identify potential preventive 
measures by analyzing DP incident data using an association rule learning approach. The results obtained from 
this analysis provide substantial evidence supporting the initial objectives. 

The analysis revealed that the primary causes of DP incidents include thrusters and propulsion-related 
failures (24%), computer-related failures (15%), power-related failures (14%), PRS failures (13%), and human 
factor-related failures (9%). These findings align with the study's objective to identify key factors contributing to 
DP incidents. 

Additionally, the data indicated that DP incidents predominantly occur during specific types of 
operations, such as diving (17.3%), drilling (16.4%), and ROV operations (14.6%). This insight addresses the 
objective of understanding the operational contexts in which DP incidents are most likely to occur, further 
highlighting the need for targeted preventive measures in these areas. 
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4.1. Recommendations 

The study underscores the critical role of human factors, particularly in LoP (drift off) incidents, where 
human error as the main cause results in 87% of these LoP incidents. This evidence reveals the objective of 
examining the impact of human error on DP incidents and highlights the importance of enhancing DPO training 
and preparedness to prevent such incidents. 

The association rules derived from the data revealed strong links between specific root causes and DP 
incident outcomes. For example, environmental factors, such as squalls and sudden changes in current, were 
shown to lead to drift-off incidents with high confidence. These findings validate the objective of identifying 
critical risk factors and developing strategies to mitigate their impact.  

The data analysis presented in this paper highlights the significant impact of human error and technical 
failures on DP incidents. For instance, Table 7 and other association rule analyses demonstrate that many DP 
incidents can be traced back to inadequate knowledge and incorrect actions by DPOs. It is recommended that 
companies ensure that DPOs receive specific simulator training to enhance their ability to respond effectively 
during DP emergencies. This training should cover technical failures, adverse weather conditions, and their 
consequences, such as losing all wind sensors. 

It is a well-recognized best practice in the maritime and offshore industries for personnel to familiarize 
themselves with all relevant documentation before commencing operations. However, this practice is not always 
consistently followed, leading to preventable DP incidents attributed to human factors and insufficient 
knowledge. Placing the responsibility on companies can ensure better adherence to this practice, promoting 
thorough preparation and continuous learning to prevent DP incidents. Prior to joining vessels, companies 
should ensure that DPOs review Failure Modes and Effects Analysis (FMEA), annual trial reports, the DP Manual, 
DP incident/failure reports (if available), the latest DP audit report, and other relevant documents. This 
recommendation is based on industry insights and empirical findings from the study, underscoring the critical 
role of comprehensive preparation in mitigating DP incidents. 

In conclusion, this study achieved its objectives by identifying the main causes of DP incidents, 
understanding the operational contexts, and highlighting the importance of human factors. The findings provide 
a basis for recommending enhanced training and preparation for DPOs, which are crucial steps in improving 
the safety and reliability of offshore operations. Future research should focus on refining these association rules 
and further investigating the specific impacts of human error on DP incidents, and exploring advanced 
methodologies for more specialized analysis. 

4.2. Suggestions for Future Study 

Future research efforts should focus on refining association rules and investigating the specific impacts 
of human error on DP incidents. This deeper exploration could significantly enhance our understanding and 
contribute to the development of more effective strategies for preventing DP incidents.  

Moreover, future studies could categorize different types of offshore vessels and DP equipment classes 
to individually analyze LoP incidents for each specific type of DP vessels. Employing advanced methodologies, 
such as machine learning or Bayesian network methods, can provide more sophisticated and precise insights 
into the causative factors and potential preventive measures for DP incidents across various operational 
contexts. 
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