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Correctly distinguishing urbanized marine areas from bare ground is becoming increasingly important 

in the context of urbanization and environmental management. This study explores the feasibility of using 

spectral indices to distinguish urbanized marine areas from bare ground with similar spectral signatures. The 

Landsat-8 data were analyzed and different spectral indices were calculated and tested for their effectiveness 

in identifying urban areas. The results show that the Normalized Difference Built-up Index (NDBI) and the 

Vegetation Blending Unit (VBU) have promising potential for distinguishing urban areas from bare ground. The 

identification of category boundaries based on the distribution of minimum and maximum values of different 

spectral indices allows a clear delineation of urbanized areas. This study highlights the usefulness of spectral 

indices in extracting urbanized marine areas from remote sensing data and has practical implications for urban 

planners, decision makers, and stakeholders involved in urban planning, land use management, and 

environmental protection. However, caution is needed to avoid misclassification, and careful selection of 

appropriate indices is crucial to achieve correct classification results. 
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1. INTRODUCTION 

The urbanization of the planet, together with its increasing population, is a continuous process that 

began thousands of years ago (Alphan, 2003; Fu & Weng, 2016). Urbanization is a global phenomenon 

characterized by the concentration of the human population in cities, leading to the growth of urban areas. The 

trend towards urbanization is a long-term process that has been increasing at an unprecedented rate in recent 

decades. The number of people living in urban areas has surpassed the number of people living in rural areas, 

with 68% of the world's population expected to live in urban areas by 2050 (Akbar et al., 2019; Anand, 2019).  

The rapid pace of urbanization has significant implications for economic, social, and environmental 

sustainability. While urbanization has led to increased economic growth, it has also created significant 

challenges in terms of poverty, inequality, and environmental degradation (Adnan, 2020). As urban populations 

continue to grow, the demand for resources such as water, energy, and food will increase, increasing the strain 

on natural resources (Jirwankar & Prasad, 2021). 

The phenomenon of urbanization goes beyond local landscapes and affects global environmental 

dynamics, especially in marine ecosystems. As urban areas expand, they exert considerable pressure on 

adjacent marine areas, leading to changes in land use and ecological balance. This global trend is not only a 

demographic shift, but also an environmental issue, as urban sprawl and infrastructural development often lead 

to habitat destruction, pollution and ground cover changes that can have a negative impact on the marine 

environment. Studies such as those by B. Halpern (2008) and F. Holon (2015) have highlighted the intricate link 

between urban expansion and the degradation of marine ecosystems and emphasized the need for integrated 

urban and marine spatial planning. This global perspective on urbanization underlines the importance of our 

study, which aims to accurately identify and manage urbanized marine areas and thus contribute to the 

sustainable management of the urban and marine environment. 

In recent years, the Kerch Peninsula has undergone significant technological change. Just in the last 5-

10 years, a major transportation artery, the Tavrida highway, has been built connecting the Russian mainland to 

the Crimean Peninsula via the Crimean Bridge (Pozachenyuk et al., 2019). These developments have led to 

significant changes in the landscape and land use patterns of the region, which are of interest to researchers 

studying the impact of human activities on the environment. Therefore, a study of the changes in the landscape 

and land use patterns on the Kerch Peninsula is necessary to assess the impact of these changes on the 

environment and to provide information for future planning and development of the region (Krivoguz, 2021). In 

addition, the construction and opening of several industrial enterprises has led to the creation of numerous 

employment opportunities in the region. Nevertheless, statistics show that the population in the region is 

continuously growing, which is not only due to the increasing number of tourists visiting the peninsula, but also 

due to the technological advancements in the region (Krivoguz et al., 2018). 

The recent technological advances and infrastructural developments on the Kerch Peninsula serve as 

a microcosm for the broader challenges and changes associated with urbanization. The construction of the 

Tavrida highway and the establishment of new industrial plants are not only local phenomena, but reflect the 

global trend of urban sprawl and industrialization. Such developments often have a double impact – while 

contributing to economic growth and regional development, they also pose a major challenge to environmental 

integrity and sustainable land use. For example, studies such as that by M. Naikoo (2020) have shown how 

similar infrastructural projects in other regions have led to significant changes in ground cover and ecosystem 

services, necessitating a reassessment of urban planning strategies. By analyzing the Kerch Peninsula, this 

study offers insights into the complex interplay between technological development and environmental 

sustainability, providing valuable lessons for urban planners and policy makers worldwide. 
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The study of ground cover in urbanized areas is currently an important task in the context of the 

development of modern remote sensing technologies as well as the intensification of urbanization processes. 

This is particularly important considering the continued growth of urban areas and the associated environmental 

challenges. Therefore, the understanding and accurate characterization of ground cover in urban environments 

is crucial for urban planning, resource management and environmental monitoring. Research efforts in this area 

have been intensified in recent years, focusing on the development of accurate and efficient remote sensing 

techniques for urban ground cover mapping and analysis (Alshari et al., 2021). The process of urbanization often 

leads to significant changes that can be observed in different areas, resulting in ecosystem changes, reduction 

of vegetation cover, deforestation, soil degradation and erosion, among others (Joshi et al., 2021). 

The advancement of remote sensing methods and tools has addressed the challenge of limited 

accessibility in conducting comprehensive studies of the Earth's surface in terms of space and time (Borovskaya 

et al., 2022). This has made possible the acquisition of high-precision data for virtually any location on Earth. 

The development of these techniques has led to significant advances in the study of urban areas, which is a 

crucial task in the context of modern remote sensing technologies and the intensification of urbanization 

processes (Hussain et al., 2022). Remote sensing has played a crucial role in the analysis of urbanization, as it 

provides a unique perspective on the spatial and temporal dynamics of urban areas (Xia et al., 2019; Karakus, 

2019). Remote sensing data can be used to detect and monitor land use and ground cover changes, track urban 

growth, and assess the impact of urbanization on the environment (Zhang et al., 2019; Ahmad et al., 2017; Cui 

& Shi, 2012; Patra et al., 2018). Remote sensing is used in many areas, such as mapping the extent of cities, 

quantifying impervious surface coverage, analyzing the effects of the urban heat island , and monitoring the 

urban vegetation cover. 

Remote sensing has several advantages for the analysis of urbanization, including the ability to collect 

data at different spatial and temporal scales and giving a comprehensive overview of the urban landscape 

(Jirwankar & Prasad, 2021; Sultana & Satyanarayana, 2020; Qiao et al., 2020). Remote sensing data can also 

be used to generate accurate and objective information, avoiding the biases that can arise from subjective 

assessments. Furthermore, remote sensing data can be easily integrated with other geospatial data, allowing 

for the development of more complex models and analyses (Krivoguz et al., 2021). 

With the increasing availability of high-resolution remote sensing data and advanced analytical 

techniques, the role of remote sensing in the analysis of urbanization is expected to grow. It has the potential to 

support evidence-based policy making and urban planning, making possible the better management of urban 

growth and the protection of natural resources (Yonaba et al., 2021). 

Remote sensing has been widely used for land mapping and classification, as well as for monitoring 

and managing land resources. The spectral reflectance of ground can provide valuable information about 

ground properties, including texture, organic matter content, and moisture content (Sabaghy et al., 2018; 

Alexakis et al., 2019; Ben-Dor et al., 2002; Gholizadeh et al., 2019). Remote sensing can detect and quantify 

these properties over large areas with high spatial and temporal resolution. 

Various remote sensing techniques, including optical, thermal and radar technologies, have been used 

to map and characterize ground. Optical sensors, such as multispectral and hyperspectral sensors, are most 

commonly used for ground analysis due to their high spatial resolution and ability to capture detailed spectral 

information. Thermal sensors can be used to estimate ground moisture content, while radar sensors are 

sensitive to land surface roughness and moisture content (Sabaghy et al., 2018; Yu et al., 2018) 

The application of remote sensing techniques in the analysis of urbanization has become increasingly 

important as it gives a comprehensive overview of the spatial and temporal changes associated with urban 

growth. These techniques enable the monitoring of land use dynamics, urban sprawl and its impact on the 

environment with remarkable precision and scale. The research of T. Akbar (2019) and P. Fu and Q. Weng 
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(2016), for example, show how remote sensing has been helpful in tracking urban expansion and its impact on 

ground cover in different geographical settings. Their findings highlight the ability of remote sensing to provide 

not only detailed spatial data but also important insights into urbanization patterns. This is in line with the 

objectives of our study, which uses remote sensing to analyze the unique landscape changes on the Kerch 

Peninsula, contributing to a deeper understanding of the impact of urbanization on the environment. 

Image processing and analysis techniques such as image classification and spectral mixture analysis 

were used to extract land information from remote sensing data. These techniques can be used to identify 

ground types, map ground properties and monitor ground changes over time. Machine learning algorithms such 

as support vector machines and neural networks have also been used to improve the accuracy and efficiency 

of ground mapping (Alexakis et al., 2019). 

Various studies have dealt with the extraction and analysis of built-up urban areas using remote sensing 

and geodata. Bouhennache (2019), for example, introduced the built-up land features extraction index (BLFEI) 

as a new index for this purpose. L. Wang (2018) used qualitative and quantitative analysis methods in 

combination with land surveys and Google map data to analyze the spatio-temporal characteristics of the extent 

of built-up areas in cities. S. Sultana (2018; 2020) focused on quantifying the spatial relationship between land 

use/ground cover changes and land surface temperature in large Indian metropolitan cities using remote 

sensing and GIS techniques. I. Hidayati (2018) attempted to achieve maximum extraction accuracy by merging 

several indices including NDBI, NDVI, MNDWI, NDWI and SAVI. 

J. Valdiviezo-N (2018) examined the existing build-up indices and discussed their advantages, 

difficulties and limitations. N. Xia (2019) integrated multiple data sources from remote sensing and geolocation 

datasets to extract information about urban areas, including nighttime illumination, vegetation cover, land 

surface temperature, population density, LRD, accessibility, and road networks. C. Karakus (2019) investigated 

the relationship between land use/ground cover, NDVI and land surface temperature in the city of Sivas and its 

surroundings using Landsat satellite images from 1989 to 2015, demonstrating the intensity of the urban heat 

island  effect. 

Ma (2019) proposed a fusion approach using DMSP-OLS nightlight data, MODIS ground cover 

product (MCD12Q1), and Landsat 7 ETM+ imagery to accurately extract urban built-up areas. In addition, UHI 

intensities were estimated for major cities in India during the summer season (Sultana & Satyanarayana, 2020). 

Li (2020) introduced the POI (point of interest) and LST (land surface temperature ) adjusted NTL urban index 

(PLANUI) to extract urban built-up areas with high accuracy. 

On the other hand, various research studies have dealt with determining ground properties using 

remote sensing data. Jin et al. (2018) provide a comprehensive overview of crop models, remote sensing 

techniques, and data assimilation methods for monitoring crop growth and estimating yields. Sabaghy (2018) 

gives an extensive review of current ground moisture downscaling approaches, discussing their capabilities, 

possibilities, strengths, and limitations. A new hyperspectral remote sensing method for predicting ground 

properties was developed and validated for the alpine grassland dominated by Stipa purpurea on the Qiangtang 

Plateau in the northwest of the Qinghai-Tibet Plateau (2018). 

Traditionally, vegetation changes have been determined by visual analysis or major destructive sampling 

during the growing season. However, remote and non-contact detection methods offer an alternative approach 

to detecting plant changes in near real-time, even before visual symptoms and negative effects become visible 

(Gholizadeh & Kopačkova, 2019) . Ostivari et al. (2019) developed and evaluated a ground suitability model for 

rapeseed cultivation on calcareous ground in semi-arid regions in northwestern Iran, incorporating topographic 

factors, ground data and remote sensing data. Jiang & Wang (2019) give an overview of the role of satellite 

remote sensing in the simulation of river courses. Innovative methods such as satellite remote sensing, field 

spectroscopy, soil chemical analysis and GIS have been looked into as methods for monitoring soil organic 
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matter (SOM), calcium carbonate (CaCO3) and ground erodibility (K-factor) at Akrotiri Cape, Crete, Greece 

(Alexakis et al., 2019). Shang (2020) compares different bare ground extraction methods for the black soil zone 

and evaluates their applicability to AHSI/GF-5 data. Nguyen (2021) introduces a modified bare-bottom index 

(MBI) using shortwave infrared (SWIR) and near-infrared (NIR) wavelengths derived from Landsat 8 (OLI – 

Operational Land Imager). 

Evolving remote sensing methods have greatly improved our ability to map and classify ground and 

analyze built-up urban areas. Pioneering studies such as that of Poggio et al. (2021) have looked at advanced 

land mapping techniques using remote sensing and demonstrated their effectiveness in distinguishing ground 

types and conditions. Similarly, the work of Yang et al. (2020) has been instrumental in demonstrating the use 

of remote sensing for the detailed analysis of urban areas, revealing the intricate patterns of urban sprawl and 

its impact on surrounding landscapes. These studies emphasize the versatility of remote sensing techniques in 

both urban and environmental contexts, offering valuable frameworks that our research builds upon. Specifically, 

our study extends these methods by focusing on the Kerch Peninsula, employing advanced spectral indices to 

detect the subtle differences between urbanized areas and bare ground. This approach not only contributes to 

the field of remote sensing but also provides practical insights for urban planning and environmental 

management. 

The main objective of this study is to determine the optimal spectral index for distinguishing urbanized 

marine areas from bare ground on the Kerch Peninsula, a task that is critical given the rapid expansion of cities 

and their impact on the environment. Selecting the most effective spectral index is crucial for accurate land use 

classification, which in turn plays a central role in urban planning and environmental protection strategies. By 

focusing on the Kerch Peninsula, our research not only addresses a specific regional need, but also contributes 

to a broader understanding of interactions between cities and the environment. The results of this study aim to 

provide urban planners and environmental managers with reliable tools and methods to make better decisions 

in the face of urban growth challenges. As such, it is in line with global efforts to balance urban development 

and environmental sustainability and offers practical solutions that can be transferred to similar urban contexts 

worldwide. 

2. MATERIALS AND METHODS 

2.1. Research area 

The Kerch Peninsula region is located in the eastern part of the Crimean Peninsula, bordered by the 

Sea of Azov to the north, the Black Sea to the south and the Kerch Strait to the east (Fig. 1). One of the special 

features of this region is the uniqueness of its social, economic and natural conditions, which are determined by 

the peculiarities of its geographical location, climate, relief and the level of socio-economic and economic 

development of the area. 

Economic activity in this region is primarily focused on the agro-industrial complex, which provides 

employment for about a third of the entire population of the Kerch Peninsula. The most common agricultural 

crops grown by farmers on the peninsula are barley, peas and wheat. A total of 84 different farms with different 

ownership structures are involved in agriculture, the largest of which are "Vostok" and "Zolotoy kolos". In addition 

to the cultivation of cereals and legumes, animal husbandry and the production of dairy products, as well as the 

breeding of pigs and sheep have also developed on the peninsula. 
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Figure 1. Research area map 

The development and extraction of gas from the East-Kazantip and North-Bulganaq deposits, as well 

as oil from the Semenovsk deposit, also play an important role in the economic structure of the peninsula. 

The city of Kerch, located in the eastern part of the peninsula, is also an important economic 

component. Its main activities include shipbuilding, ship repair, fishing, and fish processing. In addition, 

transportation and logistics companies play an important role, transporting freight and passengers, such as the 

"Kerch Sea Trade Port" and the "Kerch Ferry Crossing". The largest shipbuilding and ship repair companies are 

the "Zaliv" plant and the "Fregat" and "Tral" shipyards, which build ships, tugs, ferries, and tankers. 

One of the distinctive features of the Kerch Peninsula is the presence of mud volcanoes in the 

northeast and south. The areas adjacent to the mud volcanoes or mud lakes of the peninsula are characterized 

by the presence of small hills with white patches, consisting of haloids, boron minerals, and others, as well as 

oil stains and streams. 
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Figure 2. Examples of the Kerch Peninsula mud lake surface  

2.2. Structural area 

The brines of salt lakes (brine) are aqueous solutions saturated with salt (Fig. 2). Salt molecules are 

present in the form of ions due to electrolytic dissociation: cations  (𝑁𝑎+, 𝐶𝑎2+, 𝑀𝑔2+) and anions 

(𝐶𝑙−, 𝑆𝑂4
2−, 𝐶𝑂3

2+, 𝐻𝐶𝑂3
−). Other ions, some of which may be of industrial importance (bromine, boron, 

potassium), are also present in the brines of lakes (Table 1). 

Name 𝑇∘𝐶 𝑝𝐻 𝑁𝑂3 𝐵𝑟 𝐶𝑂3 𝐻𝐶𝑂3 𝑁𝑎 𝐶𝑙 

Adjigol 33.3 8.2 0.5 - 0 0.8 2.6 74.5 

Chokrak - - 1.1 - 0.2 0.9 73.0 98.4 

Tobechik 34.6 9.2 0.9 1.9 0 0.9 98.3 159.5 

Koyashskoye 34.8 7.9 1.0 2.2 0 0.4 108.0 180.2 

Yerofeevskoye 35.3 9.5 0.2 - 0 0.3 19.7 28.4 

Achi 31.1 9.8 0.11 0.14 0.05 0.2 11.9 14.2 

Table 1. Chemical composition of Kerch Peninsula lake mud according to laboratory analysis 

As shown in Table 1, the chemical composition of sludge and brine from different lakes on the Kerch 

Peninsula can vary considerably. Significant differences are observed not only in 𝑁𝑂3 and 𝐵𝑟, but also in 𝑁𝑎 

and 𝐶𝑙 concentrations. This leads to the formation of fundamentally different environments whose optical 

properties differ considerably from each other. The alkaline pH values observed at all six sites indicate that the 

lakes are dominated by carbonate and bicarbonate species typically associated with alkaline environments. In 

addition, the presence of sodium and chloride ions at all sites indicates high salinity in the lakes, which is also 

consistent with the alkaline pH values. 

The nitrate content of the lakes is relatively low, with values between 0.11 mg/L and 1.1 mg/L. This 

indicates that the nitrogen cycle is dominated by anaerobic processes, which convert nitrates to nitrogen gas. 

The low nitrate content is also consistent with the high salinity of the lakes, as the presence of salt can inhibit 

the activity of nitrifying bacteria. 

Bromide is only present at three sites, which could be attributed to the specific geological or 

hydrological conditions of these locations. The high bromide concentration in Koyashskoye (2.2 mg/L) may be 

related to the presence of evaporites or the influence of brine inflows. The carbonate content is also relatively 
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low, with values between 0 and 0.2 mg/L, suggesting that the lakes are not dominated by carbonate mineral 

precipitation.  

Overall, the high salinity and alkaline conditions of these lakes suggest that they are influenced by a 

complex interplay of geology, hydrology, and biology. The presence of specific chemical types, such as sodium, 

chloride, and bicarbonate, can be used to understand the geochemical processes occurring in the lakes and 

their surroundings. However, further research, including more detailed geochemical and hydrological analyses, 

is needed to fully understand the conditions in these lakes and the factors that influence their chemical 

composition. 

This makes it quite difficult to distinguish urbanized areas from bare ground, which necessitates the 

search for new extraction methods under the existing natural conditions. 

2.3. Data and processing 

Data from the Landsat-8 satellite from 2015 and field data for mapping urban areas and ground on the 

Kerch Peninsula were used for the study. Landsat 8 is a satellite-based remote sensing platform that provides 

images of the Earth's surface in several spectral bands. It has a total of 11 spectral bands, each with a different 

wavelength range and resolution (Table 2). 

Band Wavelength range (micrometers) Resolution (meters) Application 

1 0.43 - 0.45 30 Blue 

2 0.45 - 0.51 30 Green 

3 0.53 - 0.59 30 Red 

4 0.64 - 0.67 30 Near infrared (NIR) 

5 0.85 - 0.88 30 Shortwave infrared (SWIR) 1 

6 1.57 - 1.65 30 SWIR 2 

7 2.11 - 2.29 30 SWIR 3 

8 0.50 - 0.68 15 Panchromatic 

9 1.36 - 1.38 30 Cirrus 

10 10.60 - 11.19 100 Thermal infrared (TIRS) 1 

11 11.50 - 12.51 100 TIRS 2 

Table 2. Brief overview of the Landsat 8 bands 

Bands 1-7 and 9 are referred to as Operational Land Imager (OLI) bands, while bands 10 and 11 are 

Thermal Infrared Sensor (TIRS) bands. The panchromatic band (band 8) has a higher resolution than the other 

bands, but it only provides grayscale images. The TIRS bands (10 and 11) are used for Earth surface 

temperature measurements. 
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The following indices were used to extract urbanized areas (Table 3): 

Index name Abbreviation Bands Equation 

Normalized difference buit-up index NDBI NIR, SWIR 
𝑆𝑊𝐼𝑅 − 𝑁𝐼𝑅

𝑆𝑊𝐼𝑅 + 𝑁𝐼𝑅
 

Buit-up index BU Red, NIR, SWIR 𝑁𝐷𝐵𝐼 − 𝑁𝐷𝑉𝐼 

Built-up area extraction index BAE 
Green, Red, 

SWIR 

𝑅𝑒𝑑 + 𝐿

𝐺𝑟𝑒𝑒𝑛 + 𝑆𝑊𝐼𝑅
, 𝐿 = 0.3 

New built-up index NBU Red, NIR, SWIR 
𝑆𝑊𝐼𝑅 ∗ 𝑅𝑒𝑑

𝑁𝐼𝑅
 

Vegetation built-up index VBU Red, NIR, SWIR 
𝑁𝐷𝑉𝐼

𝑁𝐷𝑉𝐼 + 𝑁𝐷𝐵𝐼
 

Urban index UI NIR, SWIR (
𝑆𝑊𝐼𝑅 − 𝑁𝐼𝑅

𝑆𝑊𝐼𝑅 + 𝑁𝐼𝑅
+ 1) ∗ 100 

Table 3. Spectral indices used in this research to separate urban areas from ground 

The use of these indices aims to clearly separate urbanized areas from vegetation, water bodies and 

bare ground. The main challenge in distinguishing between urbanized areas and bare ground lies in their similar 

spectral characteristics and the complexity of land features and properties. In general, the spectral signature 

analysis for urbanized areas and bare ground on the Kerch Peninsula shows significant similarities (Figure 3). 

 

Figure 3. Comparison of the spectral signatures of urban areas (red) and ground (brown) 

Overall, the spectral curves are similar for both bare ground and urbanized areas. The reflectance 

maximum for them falls on the fifth and sixth channels with wavelength ranges of 0.85-0.88 μm and 1.57-1.65 

μm, respectively; the minimum - on the first 0.43-0.45 μm. 
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3. RESULTS 

A series of spectral indices were calculated to analyze the possibilities for extracting urbanized areas 

from the Landsat 8 remote sensing data and distinguishing them from bare ground with similar spectral 

signatures, as shown in Figure 4, Table 3. 

 

Figure 4. Calculating different spectral indices to extract urban areas from Landsat-8 data:  A -- NDBI; B -- BU; 

C -- BAE; D -- NBU; E -- VBU; F -- UI. 

Figure 5 shows that the VBU index is the least suited for the visual identification and differentiation of 

urbanized areas from ground. In fact, values around zero were assigned for the entire peninsula, except for 

some areas in the vicinity of the city of Kerch and the village of Schelkino. The BAE index is slightly better, 

allowing for the clear distinction of different ground cover types, but urbanized areas and ground are almost 

uniformly shown in the same color, making it difficult to clearly separate the two classes. The other indices, on 
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the other hand, provide acceptable possibilities for such separation, especially in areas with the concentration 

of mud lakes (in NBU and BU indices,  ground is marked with darker orange, while urbanized areas are shown 

in lighter shades of orange). 

 

Figure 5. Calculated values of spectral indices for urban area extraction for each sample point 
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Figure 5 shows that the values of UI in urban areas range from 90.39944 to 102.82609, with a mean of 

99.18045. VBU values range from 0.51083 to 1.23963, with a mean of 0.97511. NBU values range from 

650.77368 to 2020.27209, with a mean of 1236.61479. BAE values range from 0.3076 to 0.50113, with a mean 

of 0.44658. BU values range from -0.59266 to -0.00094, with a mean of -0.26101. NDBI values range from -

0.09601 to 0.02826, with a mean of -0.02099. 

For bare ground, UI values range from 7.62445 to 104.17863, with a mean of 54.31198. VBU values 

range from -1.29562 to 0.68525, with a mean of -0.25152. NBU values range from 143.82869 to 2721.3042, with 

a mean of 1066.96614. BAE values range from 0.47152 to 1.44824, with a mean value of 0.94575. BU values 

range from -0.83755 to -0.04919, with a mean value of -0.42224. NDBI values range from -0.92376 to 0.04179, 

with a mean value of -0.30116.  

Overall, the values of the individual spectral indices tend to be higher for urban areas than for bare 

ground, with some exceptions. For example, VBU values tend to be higher in urban areas, but there are also a 

few cases where bare ground had higher values. Conversely, BU values tend to be lower in urban areas, but 

there are a few cases where bare ground had lower values. These results suggest that spectral indices can be 

useful for distinguishing urban areas from bare ground, but careful analysis is necessary to avoid 

misclassification. 

Furthermore, the greatest difference between the index values for urban areas and bare ground was 

observed for the NDBI and VBU indices. Potentially, these two indices may be used to accurately distinguish 

ground from man-made structures. Other indices show fairly similar results for each point, which leads to 

subsequent misinterpretation of the results and reduces the accuracy of  satellite data classification using 

machine learning.  

The distribution of minimum and maximum values of different spectral indices shown in Table 4 allows 

clear identification of class boundaries for some indices, and consequently an almost unambiguous 

differentiation of urbanized areas and bare ground. 

 Minimum value Maximum value 

𝑈𝐼𝑢𝑟𝑏𝑎𝑛 90.39944 102.82609 

𝑈𝐼𝑠𝑜𝑖𝑙 7.62445 104.17863 

𝑉𝐵𝑈𝑢𝑟𝑏𝑎𝑛 0.51083 1.23963 

𝑉𝐵𝑈𝑠𝑜𝑖𝑙 -1.29562 0.68525 

𝑁𝐵𝑈𝑢𝑟𝑏𝑎𝑛 650.77368 2020.27209 

𝑁𝐵𝑈𝑠𝑜𝑖𝑙 143.82869 2721.3042 

𝐵𝐴𝐸𝑢𝑟𝑏𝑎𝑛 0.3076 0.50113 

𝐵𝐴𝐸𝑠𝑜𝑖𝑙 0.47152 1.44824 

𝐵𝑈𝑢𝑟𝑏𝑎𝑛 -0.59266 -0.00094 

𝐵𝑈𝑠𝑜𝑖𝑙 -0.83755 -0.04919 

𝑁𝐷𝐵𝐼𝑢𝑟𝑏𝑎𝑛 -0.09601 0.02826 

𝑁𝐷𝐵𝐼𝑠𝑜𝑖𝑙 -0.92376 0.04179 

Table 4. Distribution of minimum and maximum values of each index for urbanized areas and bare ground 

The minimum and maximum values for each index were determined separately for urban areas and 

ground. The UI values for urban areas ranged from 90.39944 to 102.82609, while for bare ground they ranged 
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from 7.62445 to 104.17863. The VBU index values for urban areas ranged from 0.51083 to 1.23963, while for 

bare ground they ranged from -1.29562 to 0.68525. NBU index values for urban areas ranged from 650.77368 

to 2020.27209, while for land areas they ranged from 143.82869 to 2721.3042. BAE index values for urban areas 

ranged from 0.3076 to 0.50113, while for bare ground they ranged from 0.47152 to 1.44824. BU index values 

for urban areas ranged from -0.59266 to -0.00094, while for bare ground they ranged from -0.83755 to -0.04919. 

Finally, the NDBI index values for urban areas ranged from -0.09601 to 0.02826, while they ranged from -0.92376 

to 0.04179 for bare ground. 

The analysis of the values presented in Table 3 shows a clear distinction between urban areas and bare 

ground, as indicated by the different ranges of indices for each type of surface. The highest values for urban 

surfaces were observed for NBU and UI indices, while the VBU index showed a more moderate range. For bare 

ground, on the other hand, the NBU index had the largest range and the VBU index had a clearly negative 

minimum value. BAE index showed values closer to 1 for bare ground, indicating the presence of vegetation, 

while the values for urban areas were closer to 0. Finally, the NDBI index showed negative values for urban 

surfaces and positive values for bare ground, reflecting the higher presence of built-up areas in the former and 

the absence of these areas in the latter.  

 

Figure 6. Visual representation of the areas occupied by the class "bare ground" on the example of Lake 

Kachik (A - RGB Composite; B - VBU; C - BAE; D - NDBI) 

The area covered by the "bare ground" category in the vicinity of Lake Kachik on the Kerch Peninsula 

is presented in Figure 6. The RBG composite image shows that in reality, the lake surface is completely covered 

by solid matter, i.e. dried mud. 
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Figure 7. Visual representation of the areas occupied by the "urban area" category on the example of the city 

of Kerch (A - RGB Composite; B - VBU; C - BAE; D - NDBI) 

Visually and by their spectral characteristics, the given area resembles urbanized areas, which are 

depicted in Figure 7 in white color. The urbanized areas in Figure 7 are not evenly distributed, but rather 

interspersed with woody and shrubby vegetation, which is typical of urban development. Analyzing the obtained 

spectral indices, it is noticeable that VBU and BAE indices give practically identical images of "urban area" and 

"bare ground", which is unsuitable for a clear cut identification of the categories. The NDBI index, on the other 

hand, allows a clearer distinction between them. 

Here, urbanized areas are represented by lighter shades of orange, while ground is shown in a darker 

red hue. A small problem, perhaps, could be the western part of the lake, where the shoreline visually resembles 

manmade structures. It is worth noting the BAE index separately. Despite seemingly different ranges of index 

distribution, there are no visual differences between them. 

4. DISCUSSION 

The growing application of spectral indices for urbanized area classification emphasizes their critical 

role in addressing the challenges posed by rapid urbanization. This is evident in the body of research that has 

emerged in recent years, exploring various indices for urban area mapping and analysis. 

For example, Santra (2020) focused on the automated extraction of impervious built-up areas using 

Resourcesat LISS-III imagery, highlighting the Impervious Built-up Index (IBUI) as the most accurate for this 

purpose. This finding corresponds to the broader remote sensing trend where the quest for precision in urban 

area extraction has led to the development and refinement of various spectral indices. By contrast, this study 

emphasizes the effectiveness of NDBI and VBU indices, contributing to the understanding of their specific 

applications in distinguishing urbanized marine territories from bare ground. Similarly, Prasomsup et al. (2020) 

studied the Modified Built-Up Index using Landsat 8 data, finding it more accurate than the original Built-Up 



 WebFirst 

Index for classifying built-up areas. This points to a significant development in spectral index refinement, 

underscoring the evolving nature of these tools to meet specific environmental and urban demands. The 

presented research, in its focus on NDBI and VBU, complements this trend by offering a nuanced understanding 

of how these indices can be applied to distinguish specific land covers, particularly in coastal urban settings. 

The study by Son et al. (2020) in San Salvador gives a crucial insight into the relationship between 

land surface temperature and urban growth using NDBI. These findings, showing a significant correlation 

between temperature and NDBI, resonate with this research, suggesting that NDBI is not only effective for urban 

area classification but also for understanding the environmental impacts of urbanization, such as changes in 

local temperature regimes. Finally, Ezimand et al. (2021) further expanded on this by studying the effects of 

urban structures on land surface temperature changes in Tartu, Estonia. Their observation that NDBI has a 

higher correlation with temperature than fractional vegetation cover offers an interesting perspective on the 

multifaceted nature of the impact of urbanization. It emphasizes the potential of NDBI to characterize urban 

environmental changes, a topic that is central to this study as well.  

The findings of this study, which demonstrate the effectiveness of NDBI and VBU indices in classifying 

urbanized areas, have significant implications for urban planning, land use management, and environmental 

protection . The correct identification and delineation of urbanized areas using these spectral indices can greatly 

enhance the accuracy of urban planning strategies. This accuracy is crucial to meet the growing demands of 

urban populations, while balancing the preservation of the environment and bare ground. In the realm of land 

use management, the study's results give planners and decision-makers reliable tools to better understand 

urban growth patterns. The ability to effectively distinguish urbanized areas from bare ground using spectral 

indices like NDBI and VBU is particularly valuable for monitoring and managing urban sprawl. This capability is 

essential for sustainable development, as it facilitates the optimal allocation of land resources, ensuring that 

urban expansion does not encroach upon ecologically sensitive areas or agricultural land. Moreover, the findings 

have profound implications for environmental protection. By correctly classifying urbanized areas, the study 

contributes to a deeper understanding of the environmental impacts of urbanization, such as changes in land 

surface temperature and the urban heat island effect. This understanding is critical for developing strategies to 

mitigate the environmental impacts of urban growth, including the design of green areas, urban forests, and 

other ecological interventions. Furthermore, these insights can inform policy and affect practice in urban and 

environmental management. Policymakers can leverage these findings to develop more informed and effective 

urban policies that prioritize both development and environmental sustainability. For instance, urban zoning 

regulations, land use planning, and urban design can all benefit from the correct classification of urban areas 

using NDBI and VBU indices. 

However, the findings of the study can be interpreted in several ways. First, these results support the 

hypothesis that specific spectral indices can accurately differentiate between urbanized and bare ground. This 

is significant in the context of urban sprawl, where precise demarcation of urbanized areas is crucial for effective 

urban management and policymaking. Second, the research illuminates the intricate relationship between urban 

expansion and ground cover changes. The ability of NDBI and VBU indices to distinctly classify urban areas 

highlights the dynamic nature of urban landscapes and the potential of remote sensing technologies in 

monitoring these changes. Moreover, the findings have implications for environmental management. The clear 

demarcation of urbanized areas helps understand the environmental impacts of urbanization, such as habitat 

disruption, changes in local climate, and increased pressure on natural resources. This understanding is vital 

for developing strategies aimed at mitigating the adverse effects of urban growth and promoting sustainable 

urban development. Furthermore, the study's outcomes suggest that the use of spectral indices like NDBI and 

VBU could be integrated into land use planning and environmental conservation frameworks. By providing a 

more nuanced understanding of urban land cover, these indices can inform the development of more targeted 

and effective urban policies and strategies. Lastly, the research underscores the need for ongoing refinement 

of remote sensing techniques in urban studies. As urban environments continue to evolve, the continuous 
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improvement of classification indices will be essential for staying abreast of these changes and providing 

accurate, up to date information. 

Study results open several avenues for future research. One key area is the further refinement of these 

indices. Future studies could explore the development of more nuanced indices or modifications of NDBI and 

VBU to enhance accuracy, especially in diverse geographical contexts or under varying environmental 

conditions. Additionally, integrating these indices with other data sources, such as socio-economic data, 

demographic information, and climate models, could provide a more comprehensive understanding of the urban 

ecosystem. Such integrations could be particularly useful in developing predictive urban planning models, 

where anticipating future urban growth and its environmental impacts become crucial. Another promising 

direction is the application of these spectral indices to monitoring and managing urban green areas. As urban 

areas expand, maintaining and increasing urban vegetation is vital for environmental sustainability and urban 

climate regulation. Research into how NDBI and VBU can assist with the management and optimization of urban 

green areas could provide valuable insights into sustainable urban development. Moreover, there is a significant 

opportunity to apply these indices in studies focused on urban heat island effects. Understanding the relationship 

between urbanization, as indicated by NDBI and VBU, and local temperature variations could inform strategies 

to mitigate the urban heat island effect, contributing to more livable urban environments. Finally, considering 

the rapid advancement of remote sensing technologies and data processing algorithms, future research can 

also explore the application of machine learning and artificial intelligence to improve the efficiency and accuracy 

of urban area classification using spectral indices.  

5. CONCLUSION 

The study of the use of spectral indices to extract urbanized areas from Landsat-8 remote sensing data 

has provided important insights. It was found that while the VBU and BAE indices showed limited effectiveness 

in distinguishing urbanized areas from ground, they were not completely effective in distinguishing urban areas 

from ground. However, other indices, particularly the NDBI, showed considerable potential for this purpose, 

especially in regions characterized by muddy lakes. 

The study found that spectral index values were generally higher for urban areas than for bare ground, 

with NDBI and VBU indices showing the most significant differences between urban areas and bare ground. 

This suggests their potential utility in accurately segmenting these two land cover types. The distribution of 

minimum and maximum values of different spectral indices facilitated the identification of clear category 

boundaries in some instances, enabling the precise differentiation of urbanized areas from bare ground. 

It was emphasized that while spectral indices are valuable tools for distinguishing between urban areas 

and bare ground, caution is needed to avoid misclassification. Choosing the appropriate indices is crucial for 

ensuring accurate classification results. Inaccurate interpretation and reduced accuracy in the classification of 

satellite data can occur when indices with overlapping results are used, especially in machine learning 

applications. 

In conclusion, the study highlights the effectiveness of spectral indices such as NDBI and VBU in 

extracting urban areas from remote sensing data. The results are of practical importance for urban planners and 

decision makers as they provide important insights for informed urban planning, land use management and 

environmental protection. The study advocates careful analysis and selection of appropriate spectral indices to 

avoid misclassification and ensure the correct identification of category boundaries, which is critical for accurate 

land classification. These insights not only contribute to the field of remote sensing but also provide valuable 

tools and methodologies for urban planning and environmental management professionals. The research 

underscores the importance of nuanced analysis in the application of spectral indices, paving the way for more 

informed and effective decision-making in urban and environmental planning. 
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