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Predicting Vessel Tracks in Waterways 

for Maritime Anomaly Detection 

Finn-Matthis Minßen1, Jannik Klemm1, Matthias Steidel2, Arto Niemi1 

Many approaches to vessel track prediction and anomaly detection rely only on a vessel’s positional 

data. This paper examines whether including tide and weather data into the track prediction model improves 

accuracy. We predict vessel tracks in waterways using a bi-directional Long Short-Term Memory (Bi-LSTM) 

approach and a transformer model. For this purpose, the boundaries of the Elbe and Weser river waterways are 

merged with vessel position data. Additionally, tide data, as well as weather information, will be used to train the 

model. To ascertain whether this additional data improves the accuracy, the models have been  trained with and 

without tide and weather data and evaluated against each other. Furthermore, we have investigate whether the 

predictions can be used for detecting anomalous vessel behaviour. Our results show that the lowest average 

error and the best RMSE, MSE, and MAE values have been achieved with the Bi-LSTM, where no tide and 

weather data have been used for training. We have also found that the transformer model is more accurate than 

a linear prediction model, which is used as a baseline. In addition, we have shown that deviations between 

predicted and real tracks can be labelled as anomalous. The results have shown that including tide and weather 

data does not necessarily improve the predictions. Adding data with a low information content to train a machine 

learning model may introduce noise or bias into the model. We believe that this phenomenon explains our 

results. Thereby this paper shows that simply adding this data to train the track prediction model may not 

enhance the overall accuracy. 
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1. INTRODUCTION 

The shipping industry is an important sector of the global economy, with around 80% of global trade by 

volume carried out by sea (UNCTAD, 2021). This high volume leads to dense traffic, especially in coastal regions, 

due to often limited and narrow waterways. This situation increases the likelihood of accidents, which pose major 

risks. For example, recently in the North Sea, the container ship Mumbai Maersk ran aground off Wangerooge 

(Szymanska & Murray, 2022), and a small cargo vessel (Petra L) collided with an offshore wind turbine 

(Voytenko, 2023). Predicting vessel tracks is becoming increasingly important to avoid these types of incidents, 

as these predictions can be used for detecting anomalous vessel behaviour (Nguyen & Fablet, 2021).  

This paper uses two types of model to predict vessel tracks in waterways. The first is a bi-directional 

Long Short-Term Memory (Bi-LSTM) model that combines LSTM cells (Hochreiter & Schmidhuber, 1997), with 

bi-directional input data processing (Schuster & Paliwal, 1997). The second is a so-called transformer model 

(Vaswani et al. 2017). We use historical AIS data, tide information, weather data, and topological information as 

inputs for these models. The topological information is used for representing the waterways as grids, following 

the approach applied by Steidel et al. (2020). We then compare the results with a linear model consisting of a 

simple dense layer with a linear activation function. This model is a good baseline because it is simple and makes 

reasonable predictions. 

These experiments are motivated by previous works. Steidel et al. (2020) use Kernel Density Estimation 

(KDE) for predicting vessel tracks. However, their approach predicts vessel behaviour independently of the 

behaviour in the previous corridor. This limitation can lead to great variations for each of the parameters 

considered. Our approach predicts tracks through multiple corridors. Furthermore, we compare the prediction 

accuracy for models with and without the weather characteristics: wind speed, wind direction, wave height, and 

tidal data. Steidel et al. (2020), for example, have already considered enhancing the prediction performance 

with weather information. A review paper by Zhang et al. (2022) has also argued that combining several data 

sources to predict tracks has been insufficiently studied. To the best of our knowledge, transformer models have 

so far only used AIS data for track prediction (Nguyen & Fablet, 2021).  

This paper further investigates whether these predictions can be used to detect anomalous vessel 

behaviour. We have evaluated the viability of predictions with data that was not used for training. Track 

predictions have been made based on this data. If a vessel’s behaviour diverges from the prediction, it has been 

flagged as anomalous. This approach is also motivated by the work of Steidel et al. (2020), as they mention that 

their approach can be used to detect when a vessel is moving outside a waterway or on the opposite lane of the 

waterway. 

This paper is organised as follows: Section 2 describes recent works on vessel track prediction and 

anomaly detection. Our approaches are detailed in Section 3. Part 3.1 describes the input data sources, 3.2 the 

Bi-LSTM and transformer models, and 3.3 the anomaly detection approach. Section 4 provides the results. They 

show that the average prediction errors obtained with the Bi-LSTM and the transformer models are lower than 

those of the linear model. However, including tide and weather data does not improve accuracy. The approach 

can detect anomalous vessel behaviour. Yet in certain areas waterways are so distinct that vessels in them are 

often flagged as anomalous. This issue raises the question of whether these areas should be separately tackled 

– in other words, outside the prediction model as proposed here. A more thorough discussion of the results, as 

well as the conclusions, is presented in Section 5. 
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2. RELATED WORK 

2.1. Vessel Track Prediction 

The prediction of vessel tracks has been intensively researched in recent years. Zhang et al. (2022) 

summarise 57 different works covering this area. Their summary shows that machine learning has become  

increasingly important since 2020. State-of-the-art models often use variations of LSTM models to predict the 

expected vessel movement. 

One approach, introduced by Mehri et al. (2021), trains separate LSTM models for each type of vessel. 

To train these models, AIS data were used from November 2017 to the end of December 2017 from the eastern 

coast of the United States. In addition, geographic information was used to simplify vessel tracks. The models 

were then evaluated using the Root Mean Square Error (RMSE) and the pointwise horizontal error. Their 

accuracy was compared with an ordinary LSTM model. The results show that the new method achieves a lower 

point-wise prediction error than an ordinary LSTM model. 

In addition, variations of LSTM models were used to predict vessel tracks. Li et al. (2023) designed a Bi-

LSTM to propose short-term vessel predictions. The model was trained with AIS data from 1,364 vessel tracks 

collected during one month in the Taiwan area. It was evaluated by comparing the accuracy with other methods, 

such as LSTM and Recurrent Neural Network (RNN) models. The results have shown that the Bi-LSTM has the 

lowest error rate in all categories compared to the other models. Based on this, Li et al. assert that the developed 

model can accurately predict short-term trajectories. 

A Bi-LSTM model can also be found in the work of Liu et al. (2021). They developed a series of routing 

algorithms, where a Bi-LSTM was augmented with an ‘attention mechanism’ to predict the next position of a 

vessel along the trajectory. The attention mechanism should make the prediction more accurate by more 

effectively learning the dependencies upon the AIS data. This method was trained with AIS data from fishery 

vessels along the east coast of China from May 2015 to May 2018. The results showed that the methods 

predicted vessel positions to an error of less than 300 m after one hour, and an error of 2.73 km after nine hours 

when using an iterative process. 

Zhang et al. (2021) combined two LSTM model variants to predict vessel tracks. First, an encoder-

decoder LSTM model is used to extract features from AIS data. These extracted features are then combined 

back with the orginal AIS data. Then, in the final step, an attention-based Bi-LSTM is used to predict the 

subsequent vessel tracks. To train the model, AIS data from the US East Coast from January 2016 was used. 

Their results showed the MSE of the constructed model to be lower compared to an ordinary LSTM model. They 

concluded that a combination of a bi-directional LSTM and an attention mechanism improved the accuracy of 

real-time trajectory predictions. 

A sequence-to-sequence LSTM for trajectory predicting was developed by Nguyen et al. (2018). They 

divided the Mediterranean Sea into grids of 1 x 1 nautical miles and trained a sequence-to-sequence LSTM 

model that predicts the trajectory by predicting the following grids that the vessel will approach. The model was 

then trained with AIS data from March to May 2015 and evaluated against a Gated Recurrent Unit (GRU) and 

other networks. The results indicated that the LSTM showed the lowest log perplexity and was therefore well 

suited for predicting vessel trajectories, as the authors note. 

Another track prediction method based on an encoder-decoder LSTM architecture was proposed by 

Forti et al. (2020). In this method, the encoder consists of 64 LSTM cells and the decoder comprises 32 cells. 

The performance was evaluated so that the model was given five and 20 steps as input sequences and the next 

20 output sequences were to be predicted, sampling the timestamps at two-minute intervals. The data was 
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collected from June to September 2018 and include 534 different voyages from the port of Piombino to 

Portoferraio on the isle of Elba, Italy. The authors performed a qualitative comparison based on a stochastic 

Ornstein-Uhlenbeck (OU) model, developed by Millefiori et al. (2016) by calculating the RMSE. The authors state 

that the encoder-decoder LSTM method achieves a competitive performance compared to the OU method, 

especially near waypoints. 

Sekhon & Fleming (2020) developed a method for short-term predictions of vessel tracks using LSTM 

with spatial and temporal attention. In addition to an LSTM model, their encoder uses spatial attention to extract 

information from neighbouring vessels that may affect the trajectory of the vessel under consideration. The 

decoder then uses both spatial and temporal attention to learn the important parts of the encoded vector. The 

final prediction is also made using LSTMs. The model was trained with AIS data from January 2017 around the 

port of San Diego, USA. The results show both the Average Displacement Error and the Final Displacement 

Error to be lower when using the LSTM in combination with spatial and temporal attention, compared to methods 

using only one of the two attention mechanisms, as well as an original LSTM architecture. 

A different approach for trajectory predicting was developed by Nguyen & Fablet (2021). They argue 

that standard deterministic approaches, such as LSTMs, cannot capture the multi-model patterns involved in 

AIS data and are therefore ineffective for trajectory prediction. Nguyen & Fablet (2021) therefore propose a 

transformer structure to deal with the multimodal nature of AIS tracks. The transformer model contains eight 

layers, each equipped with eight attention heads. It was trained and tested with AIS data along the Danish coast 

during the first three months of 2019. The model was then evaluated, among other things, against the sequence-

to-sequence LSTM model proposed by Forti et al. (2020). Thereby a significantly lower error in the forecast, 

measured with the haversine distance, is shown both in the first three hours and after ten hours. Nguyen & 

Fablet (2021) propose that the developed model is more suitable for capturing the multi-model nature of AIS 

data and extracting useful information from historical data than the compared models. 

Recently, Zou et al. (2023) proposed combining the LSTM model with a transformer model. Their 

approach attempts to predict trajectories of multiple vessels at the same time in order to capture interactions 

between vessels. First, individual vessel trajectories are predicted with an LSTM model. Next, the so called 

vessel attention factor and motion gate parameters are calculated based on these predictions with a view to 

capturing interaction between vessels. This data is then fed into a transformer model to generate a more refined 

prediction. 

Other concepts for vessel behaviour have been proposed. Löwenstrom et al. (2022) used a Markov 

Decision Process framework, where an agent observes the current state of the environment and takes action 

with a set interval. Their method is based on a neural network that was trained using imitation learning, similar 

to reinforcement learning. They considered the ship’s type, wind conditions, and tidal data in their method. 

Yet much of the existing research uses solely the vessel location information provided via the AIS to 

predict vessel tracks. Other factors, such as weather conditions, tides, and regional geographical characteristics 

also influence the track taken. As Zhang et al. (2021) pointed out, combining several data sources to predict 

vessel tracks has not yet been sufficiently researched.  

In this paper, a data-driven model is trained to predict a vessel’s next positions within a waterway. To create a 

dataset, AIS data, as well as data from waterways will be used. Furthermore, the paper examines the extent to 

which tide and weather information can influence predictions. Here an iterative approach is used to predict the 

next positions inside the waterway. The approach makes the prediction model slightly less complex and should 

therefore lead to more precise results. 
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2.2. Anomaly Detection 

Stach et al. (2023) provide a thorough survey on anomaly detection in vessel traffic services. They state 

that most commonly used tools are rather simple, such as vessel-speed, a number of alerts, anchor watch or 

geofence-based monitoring. Because the task is safety-critical, the reliability and explainability of the technique 

play important roles. Therefore the most advanced techniques have not yet been used in practice. 

The technique chosen for anomaly detection depends on the type of anomaly being studied. In literature, 

data-driven models for anomaly detection often consist of two parts. Firstly, the normal behaviour of a vessel is 

learned from historical data. The resulting predictions are then applied for detecting anomalies (Yan & Wang, 

2019). An anomaly thereby indicates that a vessel’s track is significantly different from the expected one, with a 

certain threshold. Therefore the methods can detect many forms of abnormal vessel behaviour. However, for 

detecting collision risks one must study encounters involving two or more ships (Guo et al., 2023). In these 

cases, a particular behaviour of an individual ship may appear normal. The hazardous situation becomes 

apparent only when the overall vessel traffic is considered.  

Venskus et al. (2021) developed an autoencoder LSTM that predicts a region the vessel should be in 

after up to 2.4 hours. This model was trained and evaluated with AIS data from cargo vessels along the Danish 

waters from 2006 to 2020, as well as meteorological data from 2019 to 2020. With this approach, the model 

learns the normal vessel behaviour which can then be used to classify vessel behaviours as abnormal if the 

actual position of the vessel is outside the predicted region. The authors also developed a statistical wild 

bootstrap approach. Nevertheless, their results showed that the LSTM gave more practical predictions 

regarding vessels’ behaviour. More recently Murray et al. (2023) tested autoencoders to detect anomalies in the 

Oslo fjord in Norway, where autonomous barges transport cargo between Moss and Horten. 

Ristic (2014) developed an approach whereby anomalies can be detected based on specific positions, 

as well as on the speed of the vessel. To accomplish this, the area of interest is divided into ‘cells’ where vessels 

normally travel. Anomalies are then detected by comparing the position and speed with the distribution learnt. 

The method was tested with AIS data from January to May 2009 in the port of Jackson, Australia. 

One approach that is frequently referred to when predicting anomalies is called the Density-Based 

Algorithm for Discovering Clusters (DBSCAN) (Ester et al., 1996). With this approach, clusters of arbitrary 

shapes can be efficiently discovered. To achieve this, a neighbourhood around each datapoint is defined from 

which dense regions of points are identified as clusters. Based on this approach and applied to the maritime 

sector, Pallotta et al. (2013) developed an unsupervised methodology to incrementally extract information from 

AIS data and detect low-likelihood vessel behaviour. This approach, called Route Extraction for Anomaly 

Detection (TREAD), was then further developed by the authors to detect whether a vessel is off-route, in reverse 

traffic on the route, or whether the speed is not compatible with the route followed (Pallotta & Jousselme, 2015). 

They used AIS data in the Ligurian Sea from January to February 2013, extracted this data into tracks, and then 

compared these tracks to the extracted routes. An anomaly is flagged when a threshold value of the route is 

exceeded. The results show that 87.3% of the routes are correctly classified as anomalous. The authors further 

state that the ability to detect anomalies is highly dependant on the regularity of the traffic patterns in the 

observed area. 

Recently, Zhang et al. (2024) presented an anomaly detection method based on a graph attention 

network method. Their model has a time graph attention module and a feature graph attention module to capture 

temporal dependencies and correlations between ship features. The local and long-term ship feature 

correlations are then characterised with a joint detection strategy that employs reconstruction and prediction 

modules. The results from these characterisations are combined to calculate an anomaly score. 
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Using the developed model based on the approach of Steidel et al. (2020) to detect anomalies has the 

advantage that the information extracted from the waterways could also be used to detect whether a vessel is 

within these waterways. This information is relevant because, depending on the type of vessel, only within the 

waterways would there be a minimum depth at which the vessel could navigate. Also, instead of the KDE used 

by Steidel et al. (2020), a data-driven model could be used to predict the tracks more accurately within the 

waterways. Based on this approach, deviations from the ‘true’ or expected track could be measured, and if the 

deviations are above a certain threshold, the track would then be marked as anomalous. 

3. MATERIAL AND METHODS 

3.1. Maritime Data 

 Data Preparation 

AIS data are generated in the automatic exchange of data between vessels, which gives information 

about their characteristics and positions. AIS data is collected from base stations that monitor traffic locally and 

from satellites collecting data on a global scale. Since the use of AIS is mandatory for specific vessels, this data 

gives a view of ship traffic worldwide and allow for the creation of vessel tracks (Stróżyna et al., 2022). We have 

extracted from the AIS data the Speed Over Ground (SOG), Course Over Ground (COG), vessel position, 

identification number (MMSI), and the time at which the vessel sent the message.  

Based on the approach of Steidel et al. (2020), we assume that vessels in the area of interest have to 

sail within the waterways, because only there can a minimum depth be ensured. Waterways are bounded by 

starboard and port buoys that structure traffic within the waterways. These buoys are placed at indeterminate 

intervals and at crossings to help navigate within the waterways. Within these waterways, vessels are obliged to 

sail as close as possible to the starboard buoy (IALA, 2017). To extract the required information, the waterways 

are divided into a grid, where port side buoys pi and starboard side buoys si form a cell ci, as shown in Figure 1.  

 

Figure 1. Waterways are extracted as grids 

With this approach, a waterway forms a sequential series of cells. All AIS positions occurring within 

these cells can be filtered. This filtered AIS data is then used to create continuous AIS tracks along the 

waterways being considered. An AIS track is defined as a series of AIS messages for a particular MMSI received 

within one minute of the previous message. If the interval between received messages is longer than one minute, 

a new track is created. From these tracks we calculate transition points (TPs), where a vessel enters a cell, that 

is, when it passes between the starboard and port buoys of the respective cell. Positions before and after the 

ship enters the cell are linearly interpolated.   
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For each TP, we calculate the distance to the starboard buoy (𝑑𝑠) at the crossing. This measurement 

simplifies the prediction, because the predicted position is indicated by means of just one value, instead of using 

the latitude and longitude. Figure 2 visualises the TP, as well as the 𝑑𝑠 between the starboard and port buoys. 

We also determine the angle (β) at which the vessel moves from one cell to the next. As depicted in Figure 2, β 

is calculated using the TP, the position of the starboard buoy, and the first AIS position inside the new cell. We 

consider β to be important since, at cells where waterways cross, β may suggest which waterway a vessel will 

follow. 

 

Figure 2. Visualisation of calculation of 𝑑𝑠 and β 

Furthermore, we have tested whether tide information improves the prediction accuracy using the tide 

information from the European Centre for Medium-Range Weather Forecasts (ECMWF) (Muis et al., 2022). This 

data comprises records of the water surface level from buoys located at specific positions along the coast and 

in rivers. The water surface levels from the two recording buoys at the beginning and end of the track are added 

to the track. These values are referred to as 𝑏1 and 𝑏2. The buoys used for this depend on the vessel’s position, 

as will be shown in section 3.1.2. This data consists of records of the water level, recorded at ten-minute 

intervals. As the data collection frequency is different from AIS data, we have interpolated the water levels based 

on the time the vessel crosses the TP. 

The influence of weather data on the prediction will also be investigated, the characteristics wind speed 

(𝑤𝑠), wave height (𝑤ℎ), and wind direction (𝑤𝑑), extracted from the ERA5 dataset, also provided by ECMWF 

(Hersbach et al., 2023). The ERA5 dataset consists of latitude-longitude grids with a 0.25° x 0.25° resolution. We 

have used an algorithm to determine and select the data from the nearest grid point for each TP. The 

characteristics thereby obtained also had to be interpolated according to the time and position of the transition 

point.  

Figure 3 summarises the process of generating TPs within waterways and adding tide data and weather 

information. In total, three different combinations of parameters have been tested. In the first approach, a dataset 

has been generated using only the information from the waterways in combination with AIS data. The second 

set also features the tide information, while the third set additionally includes the weather information. 
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Figure 3. Summary of the process for generating TPs in waterways with tide and weather characteristics. The 

data generated from the preceding approaches is incorporated into the succeeding approaches. 

 Case Study Data from German North Sea Waterways 

This paper uses commercially available AIS data, collected from terrestrial and satellite sources from 

January 1 2020 to April 16 2020 along the German Bight and the Elbe and Weser rivers. The region of interest 

is an area between 54.4° N, 10.7° E, 53.1° S, and 5.8° W. Figure 4 shows the waterways in this area and Figure 

5 shows the AIS data. The AIS data has then been preprocessed by removing infeasible speed measures (2 kn 

< SOG < 30 kn), before generating the tracks. 

 

Figure 4. Waterways in the case study area 
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Figure 5. AIS data in the case study area from the year 2020 

Regarding the tide information, Figure 6 displays the position of the buoys used in the area of interest. 

Depending on the position of the track, the measurements from the two nearest buoys are added to the AIS 

data. This means that the tracks along the Elbe get assigned the measuring levels of the buoys St. Pauli and 

Cuxhaven, and the tracks along the Weser the measuring levels of Bremen and the Alte Weser buoy. The tracks 

to or from Wilhelmshaven are mapped by the measuring levels of the buoys Wilhelmshaven and Wangerooge.  

 

Figure 6. Buoys used for tide data (Bremen, Wilhelmshaven, Wangerooge, Alte Weser, Cuxhaven, St. Pauli) 

In total, 11,167 tracks with at least 20 and up to 60 transition points are used. 2,877 tracks (26%) navigate 

along the Weser, 7,949 tracks (71%) along the Elbe, and the remaining 341 tracks (3%) navigate to or from 

Wilhelmshaven. This data is split into the training (72%), validation (8%), and the test (20%) datasets. 
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3.2. Machine Learning Models 

LSTM models are widely used for predicting vessel tracks (Zhang et al., 2022). They are a type of 

recurrent neural network that uses gated units to selectively control the flow of information within the network. 

LSTMs consist of a memory cell and three types of gate: input gate, forget gate, and output gate (Hochreiter & 

Schmidhuber, 1997). The input gate regulates the flow of new information into the cell, the forget gate controls 

the flow of information out of the cell, and the output gate determines the information flow from the cell to the 

next hidden state. These gates allow selectively remembering or forgetting of information, as a result of which 

LSTMs are better equipped to model long-term dependencies in sequential data than the regular RNNs.  

To extend the capabilities of LSTMs, Bi-LSTMs incorporate information from both past and future time 

steps of the input sequence. It is a type of bi-directional RNN (Schuster & Paliwal, 1997), and its architecture 

comprises two LSTM layers: one processing the sequence in a forward direction and the other in a backward 

direction. The outputs of these layers are concatenated to produce the final output, allowing access to 

information from both temporal directions and improving prediction accuracy compared to regular LSTM 

models. 

LSTMs process input sequences sequentially, updating their internal state, one element at a time. This 

sequential nature limits parallelisation and can lead to increased computational complexity and training time, 

especially for long sequences. To address this limitation, Vaswani et al. (2017) propose the transformer model, 

which operates without any recurrence. The introduced transformer model employs a self-attention mechanism 

that enables efficient capturing of global dependencies by processing the entire input sequence in parallel. This 

attention mechanism calculates similarity scores for all pairs of positions in the sequence, allowing the model to 

learn deeper dependencies compared to LSTM models. The self-attention mechanism is combined with a feed-

forward network, as well as normalisation layers, and is embedded in encoder and decoder layers. These 

components collectively enable the transformer model to effectively capture long-term dependencies, which 

makes it successful for time series predictions. 

This work uses both Bi-LSTM and transformer models to predict vessel tracks inside waterways to 

compare these models. We use a Bi-LSTM model, where each LSTM has 128 units, followed by a dropout layer, 

and a dense layer that predicts possible future attributes. Overall, this model has at least 155,078 trainable 

parameters. This model will be compared with a transformer model that contains three transformer encoder 

layers, based on the architecture introduced by Vaswani et al. (2017). Using this architecture, the model contains 

at least 24,286 trainable parameters. This encoder layer is also followed by a dense layer predicting possible 

future attributes. 

Ideally, the transformer model and the LSTM model should have a similar number of parameters. 

However, when we trained the models, a transformer model with a higher number of parameters was found to 

be overfitting. Therefore the numbers of parameters were optimised in order to obtain the highest possible 

prediction accuracy in the test dataset. The linear model, to which the Bi-LSTM and the transformer model are 

compared, consists of a simple dense layer with a linear activation function. 

3.3. Anomaly Detection 

In this paper we compare the predicted TP values against the real TP values to detect anomalous tracks. 

An anomaly in this context is a deviation from the prediction and the truth for one of the features SOG, COG, 𝑑s, 

or β that exceeds a predefined threshold. The individual thresholds are determined for each feature based on a 

comparison between true and predicted values for the training data with which the model was trained. For this 

purpose, the standard deviation 𝜎 for the errors between the real and predicted values for the training data are 
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calculated for each feature separately. The threshold for detecting anomalies can now be set, depending on the 

requirement.  

To evaluate this concept, we have use a threshold of three standard deviations, since that includes 

99.7% of all values as normal. This value is computed directly from the 99.7% quantile of the absolute error 

between the real and predicted values for the training data. One could also consider setting different thresholds 

for each variable. In a real-world application, setting the thresholds requires expert knowledge to ensure that 

these are meaningful (Kumpulainen, 2014). Additionally, the costs of false alarms and undetected anomalies 

have to be considered. It should be further emphasised that an anomaly in this paper represents only a deviation 

from the expected value. This does not mean that a detected deviation would represent a specific risk to vessel 

traffic within the predicted waterway. 

4. RESULTS 

4.1. Track Prediction  

 Comparison of Bi-LSTM and transformer models with different sets of input data 

All models have been trained using the Adam optimiser and the Mean Square Error (MSE) to measure 

the prediction error. In this process, the models are trained to predict the next TP values based on the previous 

10 TPs. These values are then used again with the previous nine TPs to predict the subsequent TP. Using this 

iterative approach, the five subsequent TPs have been predicted. The training was stopped whenever a model 

reached convergence, i.e. the point when additional training does not improve the model. This was determined 

using MSE calculated from the validation data. This metric is used in order to avoid a situation where the model 

is overfitting to the training data. However, local minima may exist. To be able to escape from a potential local 

minimum, the models are trained for ten additional epochs after a minimum has been reached. 

To evaluate the influence of the tide and weather data, each model has been trained three times with 

different features based on the approaches shown in Figure 3. Considering these three approaches, transformer 

model training was stopped respectively after 30, 28, and 25 epochs, while Bi-LSTM models were stopped after 

63, 38, and 81 epochs. Figure 7 shows MSE progression during training for Bi-LSTM and transformer models 

under approach 1. The MSE progressions with approaches 2 and 3 were not significantly different from the one 

shown in Figure 7. In all cases, transformer models converged faster than Bi-LSTM models. However, the 

accuracy of the Bi-LSTM models does not significantly improve over the training. Additionally, one must consider 

that our transformer models have a lower number of trainable parameters than our Bi-LSTM models. 
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Figure 7. Training and validation errors for Bi-LSTM and transformer model with approach 1. Blue curves 

show the training error, and orange ones the validation error. Training is stopped ten epochs after the 

convergence. 

Table 1 shows the average error for predicting the next five TPs compared to the ground truth for 

different sets of data, using both Bi-LSTM and transformer models. The errors are calculated using the test 

dataset. 

Input Data Model 𝑑𝑠 (m) SOG (kn) COG (°) β (°) 

Linear 178.09 0.74 9.97 18.93 

Approach 1 

SOG, COG, 

𝑑𝑠, β 

Bi-LSTM 106.42 0.68 2.07 1.85 

Transformer 182.75 2.73 5.24 7.09 

Approach 2 

𝑏1, 𝑏2 

Bi-LSTM 197.46 1.02 2.16 2.03 

Transformer 171.21 2.75 5.06 5.95 

Approach 3 

𝑤ℎ , 𝑤𝑠, 𝑤𝑑  

Bi-LSTM 153.97 1.25 2.11 2.18 

Transformer 184.67 2.79 7.4 7.64 

Table 1. Average prediction error of the five subsequent TPs compared to the ground truth. 𝑑𝑠 is measured in 

meters (m), SOG is measured in knots (kn), while COG and β are measured in degrees (°). The linear model 

has been trained for each feature individually. 

When considering 𝑑𝑠, the prediction of the Bi-LSTM model in the first approach achieves an average 

prediction error of 106.42 m. This result is the best one, and about 65 m more accurate than the best result 

achieved with a transformer model. This result has been achieved in approach 2, with tide data being added. 

The linear model achieves an average prediction error of 178.09 m.  
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When considering SOG, the best result is also obtained from the Bi-LSTM in the first approach. It is 

noticeable that the result does not differ much from that of the linear prediction, which reaches a deviation of 

0.74 kn. The transformer model, on the other hand, delivers a higher prediction error at 2.72 kn. The error for 

the transformer model is similar, regardless of the data. 

For COG and the β, the Bi-LSTM achieves 2.07 and 1.85° respectively in the first approach. These are 

by far the lowest prediction errors for these features. The Bi-LSTM model is followed by the transformer model, 

which achieves an average prediction error of 5.06° for COG and 5.95° for β, in the second approach. The 

largest deviation, with 9.97° for COG and 18.93° for β, is obtained with the linear prediction.  

It is notable that the prediction results of the Bi-LSTM model become worse when more data features 

are added. However, the prediction results of the transformer model improved when tidal data was added. In 

both cases, when weather data was added, the results got worse. 

Figure 8 shows the range of errors for each prediction step and for each feature, as well as the average, 

and the 99.7% quantile of the prediction errors from the Bi-LSTM with the first approach, the transformer model 

with the second approach, and the linear prediction. As can be seen, the average and the 99.7% quantile of the 

prediction errors increases consistently when predicting the later transition points for the features SOG and 

COG. However, this is not the case for the features 𝑑𝑠 and β. This is of interest since the predicted errors for the 

first steps are included in the predictions of the last steps. Moreover, the outliers in the prediction of 𝑑𝑠, COG, 

and β for the Bi-LSTM model become lower in later predictions, as well as in the prediction of 𝑑𝑠 and SOG with 

the transformer model. For the features 𝑑𝑠 and SOG, the transformer model predicts the largest error range, 

with an error for 𝑑𝑠 of up to 2,700 m relative to ground truth and up to 11 kn for SOG. Remarkably, the 99.7% 

quantile of the error for β under the transformer model increases significantly in the third step and then 

decreases again. When considering COG and β, the linear prediction performs the worst, apart from the third 

step, predicting large outliers of up to 120° for COG and 100° for β.  

 

Figure 8. Range of prediction errors for the linear model, the Bi-LSTM model with the first approach, and the 

transformer model with the second approach 
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As in Figure 8, the prediction errors are shown in Figure 9 with the performance measures RMSE, Mean 

Square Error (MSE), and Mean Absolute Error (MAE) for the Bi-LSTM with the first approach, the transformer 

model with the second approach, and the linear prediction. The green lines show that the Bi-LSTM model has 

the lowest performance values for all four features 𝑑𝑠, SOG, COG, and β but the RMSE, MSE, and MAE for SOG 

do not differ greatly between the linear and Bi-LSTM model. The transformer model has lower performance 

values than the linear model for COG, and β. For 𝑑𝑠, the performance values from the transformer model are 

lower for the prediction steps from three to five compared to the linear model, but for the first two steps the 

values are higher for the transformer model. The transformer model has the largest prediction errors for SOG, 

compared to the Bi-LSTM and linear models. 

To further evaluate the results, we divided the predictions from this model according to the waterways 

along the Elbe and Weser rivers and Wilhelmshaven. The prediction errors for these waterways can be seen in 

Table 2. 

 

Figure 9. RMSE, MSE, and MAE of the linear model, the Bi-LSTM model from the first approach, and the 

transformer model from the second approach 
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Waterway 𝑑𝑠 (m) SOG (kn) COG (°) β (°) 

Elbe 100.57 0.65 2.17 1.87 

Weser 115.15 0.71 1.90 1.76 

Wilhelmshaven 105.15 0.82 2.22 2.64 

Table 2. Average prediction errors in different waterways 

The results show that the lowest average prediction error for 𝑑𝑠 is achieved along the Elbe river, followed 

by Wilhelmshaven and the Weser waterways. For SOG, the lowest error is again obtained along the Elbe. 

However, the difference between the best and the worst results applicable to Wilhelmshaven is less than 0.2 kn. 

For the other features COG and β, the lowest errors are achieved along the Weser river. The prediction results 

for these two features are with less than a one-degree difference and their error values are close to each other. 

The fact that predictions to and from Wilhelmshaven are slightly worse than the others can be explained by the 

scarcity of data. Only 3% of our data came from this waterway. However, since the overall results of the 

predictions for the different waterways are close, it can be concluded that the concept presented here for 

predicting vessel tracks is generalisable for the trained waterways. 

 Assessment of prediction errors 

When considering the range of prediction errors, as displayed in Figure 8 for 𝑑𝑠, the transformer model 

predicts a wider range of errors than the Bi-LSTM model. These outliers in the transformer model’s prediction 

of the 𝑑𝑠 occur for tracks where the waterway becomes significantly wider. This can be seen in Figure 10, where 

the 𝑑𝑠 of the fifth prediction is 2,766 m away from the actual position. In this case, the Bi-LSTM makes a much 

more accurate prediction, although it also predicts an error of 263 m. In the example at hand, the vessel was 

sailing far to the left in the waterway, which is unusual, since it was assumed that vessels sail as far to the right 

as possible. This deviation from the assumption of the vessel’s behaviour may also contribute to the large 

difference between the predicted distance and the actual distance. Accordingly, the assumption needs to be 

reconsidered, as it may not hold for all vessel types considered in the data. 

The outliers in predicting β and COG occur mainly for one location in the waterway along the Elbe river, 

which is displayed in Figure 11. The waterway runs along Glückstadt and the buoys are arranged in such a way 

that the vessel seems not to be passing through the waterway from the north or south, but from the west or east. 

Since the arrangement of the buoys in the course of the waterway only gives that impression at this particular 

intersection, the models are unable to represent this transition well. However, had the model actually predicted 

this outlier, this would have indicated that the model had overfitted and made predictions too close to the training 

data. 

In the case of the COG, it is particularly interesting that the linear predictions show significantly greater 

deviations in the later predictions than the other two models. This is also accompanied by a lower average 

prediction accuracy. However, the 99.7% quantile error is slightly higher for the transformer model. This 

illustrates that the linear prediction and the transformer model do not provide good results for this feature and 

that the Bi-LSTM model can predict the values significantly more accurately.  

It is noticeable that all predictions can produce erroneous results. As shown in Figure 12, the Bi-LSTM 

model predicts values outside the waterway. This phenomenon occurs during the first approach in the Bi-LSTM 

model in 0.7% of all test predictions, and in the predictions made with the transformer model in 0.4% of all test 

predictions. The linear prediction only produces this error in 0.4% of all test predictions. Erroneous predictions 
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mainly occur in curved passages, where the distance to the previous transition points becomes significantly 

smaller. With the introduction of tide information in the Bi-LSTM model, 36% of all tracks were predicted 

erroneously, which indicates that with the addition of these features, the model becomes distracted in the 

prediction and can no longer represent the dependencies between the features, as well as in the absence of 

any tide information. This can also be seen from the fact that the average error in the prediction of 𝑑𝑠 increases 

by almost 90 m. However, the added features seem to help the transformer model, because all predicted 

features, except SOG, have become more precise. 

 

 

Figure 10. Examples of 𝑑𝑠 outliers 

 

Figure 11. Section of the waterway where outliers of COG & β are predicted due to the arrangement of the 

starboard and port buoys. Although the waterway leads north and south, the arrangement of the buoys 

indicates a more westerly and easterly course, respectively 
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Figure 12. Erroneous track predictions outside waterways 

4.2. Anomaly Detection 

To evaluate the presented concept for anomaly detection, the 99.7% quantile of the prediction error is 

calculated for the all features from the training data between the real and predicted values. As previously 

mentioned, we use a 99.7% quantile, which corresponds to a threshold value of three 𝜎. For individual 

parameters, this threshold represents the following deviations: 𝑑𝑠 576.42 m, SOG 4.64 kn, COG 11.29°, and β 

13.16°. 

To test the anomaly detection approach, we have used the best performing Bi-LSTM model to predict 

tracks using data from July 28 to August 6 2020. In total, predictions about the next five subsequent TPs are 

made for 932 tracks, of which 242 navigate along the Weser river, 643 along the Elbe river, and 47 navigate to 

and from Wilhelmshaven. The predicted features have been compared to the ground truths to ascertain whether 

the defined threshold for that feature has been exceeded. In such cases, the track has been flagged. 

In certain cases, the model can predict a negative distance to the starboard buoy. Since this would 

mean that the vessel is sailing outside the fairway, these predictions are erroneous. For these cases, 𝑑𝑠 = 0 is 

assumed instead of the negative distance. 

The results of the marked transition points are shown in Table 3. 4.6% of the total tracks are marked by 

a deviation at β, 3.2% for COG, 2.8% for 𝑑𝑠, and 1.4% for SOG. This shows that the numbers of marked tracks 

are slightly different for each feature under consideration. The marked tracks are then once more divided into 

the individual waterways considered, whereby it is noticeable that, when considering 𝑑𝑠, none of the tracks along 

Wilhelmshaven are marked. For SOG, tracks are marked for Wilhelmshaven with 4.3%, 0.9% for the Elbe, and 

2.1% along the Weser. When considering COG and β, tracks along the Weser are marked with 5.8% for COG 

and 10.7% for β, and for tracks along Wilhelmshaven 10.6% for COG and 12.8% for β. This is much higher than 

the tracks marked along the Elbe, which are only 1.7%. 

 Overall 𝑑𝑠 > 

576.42 

% SOG > 

4.64 

% COG > 

11.29 

% β > 

13.16 

% 

Weser 242 5 2.1 5 2.1 14 5.8 26 10.7 

Elbe 643 21 3.3 6 0.9 11 1.7 11 1.7 

WHV 47 0 0 2 4.3 5 10.6 6 12.8 

Overall 932 26 2.8 13 1.4 30 3.2 43 4.6 

Table 3 Anomaly detection results 
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To illustrate some of the detected anomalies, Figure 13 shows two examples. In the anomaly shown on 

the left, the threshold value 𝑑𝑠 is exceeded. The vessel changes its side in the waterway to the left, while it is 

predicted to remain on the right side. In the second anomaly, the threshold β was exceeded, as the vessel 

changes here first to the left and then back to the right side. The prediction was that the vessel would have 

remained on the right-hand side. 

Overall, the marked tracks would need to be investigated further to determine whether the anomalies 

detected were actual deviations to the vessel’s usual route or whether they represented unrealistic predictions 

made by the model. However, this is outside the scope of this paper. Nevertheless, the assumption can be made 

that these marked tracks are related to the outliers of the predictions mentioned in the previous section. 

     

Figure 13. Anomalies for track prediction for parameter 𝑑𝑠 (on the left side) and β (on the right side) 

5. DISCUSSION AND CONCLUSIONS 

In this paper models for predicting Transition Points (TP), representing vessel tracks in waterways, have 

been developed and tested. We have used historical vessel positions in the form of AIS data, weather 

information, and tide data. Positions of buoys have been extracted from sea chart information and have also 

been combined with AIS data to create TPs. The data resulting from this concept is then used to train a Bi-LSTM 

and a transformer model. These models have been used to predict the subsequent transition points,  

representing the track a vessel is expected to take.  

The model that predicted the most accurate vessel tracks is a Bi-LSTM model trained without tide and 

weather information, focusing only on AIS data combined with positions of buoys that delimit waterways. Also, 

the transformer model has predicted a lower average error than the linear prediction for COG and β, as well as 

ds for the prediction steps three to five. However, unlike the Bi-LSTM model, inclusion of tide data into the 

transformer model has improved the prediction, while the weather data has still decreased the accuracy. 

Interestingly, Murray et al. 2023 attained somewhat similar results. Their anomaly detection approach 

worked best when only considering the position data. Models trained with the additional features SOG and COG 

could only detect parts of the anomalous trajectories. We believe that these results are caused by a phenomenon 

where adding data with a low information content to train a machine learning model may introduce noise or bias 

into that model (John et al., 1994), (Kuhn & Johnson, 2019). 

Considering Bi-LSTM and transformer model, during the experiments, the transformer model overfitted 

as soon as more layers were added. Therefore, we have opted to use a transformer model which has fewer 

trainable parameters than the Bi-LSTM model. Future work should experiment with different architectures, which 

may prevent this phenomenon. Solving it would improve predictions. In addition, the concept developed here 

could also be used for specific vessel types, which would help in assessing the method for real-world use.  
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Furthermore, this paper has developed a concept for detecting anomalous vessel tracks. For this 

purpose, the prediction of the dataset used to train the model has been compared to the truth value and three 

standard deviations of the error have been set as the threshold for anomalous tracks, which corresponds to the 

99.7% quantile of the error. In addition, another dataset has been processed in the same region, but at a different 

time. Having made the most accurate predictions, the Bi-LSTM model has been chosen to predict the tracks. 

As soon as the deviations were greater than the set threshold, they were flagged as anomalous tracks. In 

summary, this method can detect anomalous tracks by comparing predictions with actual measurements. 
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