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A Statistical Approach to Surface SAR 
Fleet Distribution Optimization: A Case 
Study of Croatian Waters 
 

Nina Kostović1, Ivan Toman1 Pero Vidan2 

The objective of this research paper is to propose a novel approach to the spatial distribution of the surface Search 
and Rescue (SAR) units in Croatian territorial waters using the A* algorithm. The developed model identifies the shortest 
route between maritime accident sites and the proposed locations of SAR facilities. Croatian waters, dotted with scattered 
small islands and frequent summer maritime accidents, were used as a case study for model testing. Based on the specified 
parameters and operational requirements, the study suggests 35 optimal locations for the surface SAR fleet within the area 
of responsibility of the Croatian SAR service, considering the limitations discussed in the study. The aim of this paper is not 
to present a comprehensive solution involving multiple subsystems (surface, aerial, and surveillance units). Instead, its focus 
is surface search as the initial approach. This method for determining surface SAR unit distribution is not restricted to a 
specific area, making it suitable for various locations worldwide. 
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1. INTRODUCTION 

The vision and mission of every search and rescue organisation involve 24-hour vigilance, 365 days a year, in order 
to rescue distressed individuals within the shortest possible time frame (the so-called golden hour). Continuous standby, 
modernised maritime and aerial resources, and the formation of an integrated response system are the strategic objectives 
of the Search and Rescue (SAR) organization and the SAR Convention.  

The eastern Adriatic coast is predominantly under the jurisdiction of the Republic of Croatia. This region’s relief and 
geographical features emphasise its complexity, characterised by numerous islands, bays, beaches, and shores. The vast 
waters, the natural characteristics of the sea (such as colour and temperature), favourable climate, and the area's rich 
historical and cultural heritage, make it suitable for leisure craft activities, thus, significantly bolstering nautical tourism. 
Consequently, this segment of tourism experienced rapid growth. The Croatian charter fleet, comprising over 4,300 units 
(Luković et al., 2021), contributes significantly to the sector. A noticeable increase in the number of foreign yachts and boats 
is accompanied by an increasing number of residence permits issued for these vessels (MMPI, 2024). Toman et al. (2020) 
indicate that as the number and concentration of vessels in maritime traffic increase, so does the frequency of accidents. 
This trend was observed over the past several years and is anticipated to keep increasing. According to the maritime 
accident database of the Croatian Maritime Rescue Coordination Centre (MRCC), the most frequent type of accidents are 
those requiring medical intervention.  

For effective SAR operations, the strategic positioning of maritime surface SAR units in the proximity of the accident 
site is crucial. Given the constraints posed by the limited availability of such units, optimising their distribution presents a 
significant challenge. Despite the relevance of this issue, there is a notable absence of a scientific approach adapted to the 
specific characteristics of Croatian waters. This study partially addresses this gap and represents the first effort to 
systematically analyse and propose a model for a potential solution to the issue of optimal deployment of maritime surface 
SAR units in this region.  

 The problem of SAR equipment placement optimisation is complex; various factors must be analysed for the 
complete solution. It is important to emphasise that the completed model that optimises SAR unit distribution must include 
all subsystems of the involved technologies, including surface units (vessels), surveillance and search aerial units like 
airplanes and drones, aerial units for search and rescue tasks like helicopters, as well as ground-based surveillance-only 
units and technology, for example, radars, cameras, and other related equipment. This point of view is well supported in 
several papers discussed in the literature review section. This paper does not aim to create a final solution. It focuses on a 
small subsection of the system and pertains to surface search and rescue units, i.e. vessels. As such, it can be viewed as a 
starting point for further research on the subject. 

The primary challenge in trying to optimise the distribution of the surface SAR fleet is comprehending and 
interpreting the relationship between the spatial frequency of maritime accidents and the practicality of pre-allocating surface 
SAR units in their proximity. To effectively address this challenge, adopting a statistical approach to comprehend the 
geographical distribution of accidents is usually the initial step. Therefore, developing and applying sophisticated algorithms 
is essential for determining the most effective proximity, particularly given the limited number of available units.  

The objective of such a study is the optimal spatial distribution of the surface SAR fleet, whereas the primary goal 
is to shorten the average response time to maritime accidents. Apart from following this research framework, the authors 
applied several other constraints while developing their approach. The surface SAR fleet should be stationed at locations 
where it can be permanently moored, and the crew can be ready to sail quickly. Therefore, a specific site infrastructure 
should be available, and that condition becomes an important constraint when deciding which surface SAR fleet distributions 
to include in the algorithm. Upon hand-picking locations that meet the above conditions, the authors utilised the A* 
(pronounced "A-star") search algorithm to objectively select locations that are, on average, the closest to the largest number 
of the accidents recorded.  

The A* algorithm (Hart, Nilsson & Raphael, 1968) is a derivative of the Dijkstra’s algorithm (Dijkstra, 1959), which 
combines its pathfinding strengths with advantages like the heuristic approach of the best-first search (BFS) algorithm (Korf, 
1993). Although Dijkstra’s algorithm guarantees to find the shortest path by exploring all possible paths methodically, it is 
inefficient, as it does not prioritise which nodes to analyse first. On the other hand, BFS prioritises nodes using heuristics to 
estimate the cost of reaching the goal from any given point but does not always find the shortest path, because it might 
choose suboptimal paths based on a heuristic solution alone. However, the A* algorithm combines both advantages. It 
guarantees to find the shortest path and improves computing efficiency with an included heuristic estimate. That makes it 
highly suitable for dynamic environments such as maritime path searches in geographically complex areas. These 
advantages of the A* algorithm have already been recognised in previous efforts to solve navigational problems. 
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In addition, the Dijkstra and A* algorithms have proven to be desirable route selection choices for navigation in ice-
covered waters (for example, Arctic shipping). With the ongoing climate change, the Arctic passage connecting Asia and 
Europe has become more appealing to shipping companies than the common route through the Suez Canal. Powerful tools, 
such as computer-based path search algorithms, are becoming widely used in planning navigation in waters with high spatial 
and temporal variability of the available sea passages. The authors have agreed to implement uncertainties in sea-ice 
behaviour in the algorithm as a safety parameter, in addition to considering obvious factors, such as distance, voyage time, 
and fuel consumption (Browne et al., 2022; Choi et al., 2015; Lehtola et al., 2019; Mishra et al., 2021; Nam et al., 2013). In 
maritime science, these factors are frequently used to resolve ship routing challenges (Novac et al., 2020). Finding the 
shortest route in multimodal transportation (container transport) is a useful tool in transportation system optimisation (Qiu, 
2010), as well as in introducing unmanned ships (Wang, 2021).  

Considering the existing successful results in similar subfields of maritime navigation, the A* algorithm can be a 
valid choice for research on the optimal distribution of the surface SAR fleet. In this study, the A* algorithm is used in its 
novel application for a computer-based search of the shortest route between several potential SAR locations and sites of 
maritime accidents. The authors present a literature review on this subject in the following chapter.  

2. LITERATURE REVIEW 

Numerous authors emphasise the imperative of strategic and systematic positioning of Search and Rescue (SAR) 
units. Azofra et al. (2007) highlight the need for collaboration across local, regional, national, and international levels, 
advocating for the relocation of units based on current needs within specific areas. They emphasise the need to monitor 
maritime traffic, adjust strategic zones, and amend the National Search and Rescue Plan. Razi and Karatas (2016) introduced 
the Incident-Based Boat Allocation Model (IB-BAM), a multi-objective framework designed to optimise the allocation of 
search and rescue resources. This model aims to minimise incident response times, reduce fleet operating costs, and 
address discrepancies between a vessel's operational capacity and its overload. In paper focused on the Aegean Sea region, 
Karatas (2021) proposed a deployment strategy that considers response time, workload, and available financial resources. 
The model explains the seasonal relocation of vessels and integrates joint demand to cover multiple units.  

Multi-objective mathematical models form the cornerstone of the majority of scholarly works on this subject, 
concentrating on enhancing the acceptability, effectiveness, and efficiency of maritime SAR services. While the criteria in 
these models vary, they universally strive to resolve the so-called location-allocation problem of SAR units. Akbari et al. 
(2018a, 2018b) aim to optimise this problem for the Canadian Coast Guard using criteria such as primary and backup 
coverage, arrival time, service quality, and costs. They categorise facilities based on their capabilities, availability, and the 
spatial distribution of historical accidents to simulate future demand. Their model considers four types of SAR vessels, 
prioritising time over distance as the primary criterion. Jin et al. (2021) use three types of SAR vessels for long-range maritime 
SAR operations in oceanic regions, utilising a multi-objective growth simulation algorithm (MO-PGSA) to determine optimal 
locations for SAR bases and dynamic duty points. 

 Guo et al. (2019) made an attempt to maximise the probability of operation completion and the utility of allocated 
resources for long-range maritime SAR by integrating aeronautical and marine units. Zhou (2019), Sun et al. (2022), and 
Dong et al. (2024), who consider the characteristics of sea areas and identify accident black spots in their studies, also 
emphasised the significance of mixed fleet allocations. Pelot et al. (2015) adopted a multi-criteria approach to optimise 
coverage, response time, workload balance, vessel utilisation, and budgetary constraints. Chen et al. (2023) focused on 
minimising coverage time for Hong Kong waters, while Hornberger et al. (2022) developed a spatiotemporal maritime 
accident forecast using historical data to optimise the placement of heterogeneous response units, thereby minimising 
relocation costs. 

Siljander et al. (2015) introduced an innovative approach to GIS-based travel-cost modelling, integrating wave 
height rasters and vessel speed measurements to develop cost-distance models from which response times are derived, 
however, with certain limitations. Medić et al. (2019) emphasise the importance of integrating new technologies, such as 
unmanned aerial vehicles (UAVs), to reduce response times. This approach offers a real-time situation overview and 
minimises false alarms. The paper further delineates the components of total response time as follows: 

• the interval between the accident and its confirmation by the Maritime Rescue Coordination Centre (MRCC), 

• the period between establishing the location/identifying the accident and dispatching the initial units to the 
scene, 

• the time required for rescue units to reach the accident location. 

According to the above-mentioned research background, several criteria can be applied to Croatian waters. This paper 
serves as the initial exploration of these criteria. The research will be elaborated in the following chapter.  
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3. METHODS 

Croatia currently has at its disposal 48 vessels of the Ministry of the Sea, Transport, and Infrastructure, 38 vessels 
of the Ministry of Internal Affairs, and the aerial units of the Ministry of Internal Affairs and the Ministry of Defence. Tugboats, 
environmental protection units, vessels, and privately owned aircrafts are also engaged where needed (MMPI, 2023).  

As the first step of the research, the MRCC maritime accident database was sampled for all accidents, regardless 
of type, where SAR intervention was performed within the area of service authority over a 5-year period (Jan. 2017 – Oct. 
2023). A total of 3,366 accidents were chosen, along with their geographical positions. Consequently, the authors identified 
214 potential locations along the Croatian coast and islands suitable for permanent Search and Rescue (SAR) maritime 
facilities, depending on existing infrastructure.  

The next task was to determine the nearest facility for each recorded accident from the extracted database sample. 
The challenge in finding the shortest route lies in the fact that the surface SAR fleet must navigate through obstacles (coast, 
islands, shallow water, etc.) to reach the site of the accident. If there are no obstacles and the entire area between the facility 
and the accident site consists of navigable waters, the simple plane distance equation (for short distances) or haversine 
equation (for longer distances) can be used to find the facility nearest to each accident site. In the real-world context, this is 
uncommon, so a different solution is required to address the issue. 

In this study, the problem of identifying the shortest route was solved by using the A* search algorithm between 
two geographical points on a matrix representing both land and water pixels. These two points correspond to the proposed 
SAR facility location and the position of the accident. The A* search algorithm was applied iteratively in a nested loop over 
all proposed facilities and recorded accident positions in order to determine the nearest facility for each recorded accident 
during the period concerned. A combined count of 214 proposed facilities and 3,366 accidents resulted in 720,324 runs of 
the A* search algorithm. 

Croatian waters (land and water) were presented using the Global Multi-resolution Terrain Elevation Data 2010 
(GMTED2010) dataset, which has a spatial resolution of 30 arcseconds in the horizontal direction. This resolution allowed 
the authors to create a grid with approximately 500x500 m spacing. Using this dataset, the authors extracted a LANDMASK 
variable, which resulted in a 0|1 matrix. In this grid, zeroes denote navigable areas (water), whereas ones represent non-
navigable areas (land). The final grid, covering the entire area of interest in Croatian waters, had the dimensions of 
1,000x1,000 pixels. Figure 2 shows the resulting matrix, accompanied by an example of the shortest route solved by the A* 
algorithm between two arbitrarily selected points. 

The A* search algorithm was designed to find the shortest route by avoiding non-navigable areas, such as land, 
and by utilising only navigable areas, which in this context is water. Essentially, the A* algorithm is a graph traversal and 
pathfinding algorithm based on the principles of Dijkstra's algorithm, which enhances it with a heuristic component to 
prioritise the exploration of more promising paths. Lawande et al. (2022) classified it as a deterministic pathfinding algorithm 
with a heuristic (informed) search function. Such a function provides additional information about nodes that have not been 
explored yet, in order to decide which of them to explore next. This heuristic-guided approach makes the A* algorithm more 
efficient, and results in the faster identification of the shortest path by avoiding checking unpromising nodes.  

In the A* algorithm, each pixel in the matrix serves as a node (𝑛𝑛), where zeroes (representing water) denote 
traversable nodes, whereas ones (representing land) are obstacles or non-traversable nodes (Figure 1).   
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Figure 1. The basic schematics of the A* search algorithm progression from the start toward the destination point within a 
matrix of navigable (water) and non-navigable (land) pixels. Source: Adapted from Lawande et al. (2022) 

The 𝑔𝑔(𝑛𝑛) is defined as the actual cost of the path from the starting node to any node 𝑛𝑛. 𝐻𝐻(𝑛𝑛)  represents the 
heuristic estimated cost from node 𝑛𝑛 to the destination. For distance calculation, the Euclidean distance formula was applied 

between two points, denoted as (𝑥𝑥1, 𝑦𝑦1) and (𝑥𝑥2, 𝑦𝑦2): 

𝑑𝑑 = �((𝑥𝑥1 − 𝑥𝑥2)2 + (𝑦𝑦1 − 𝑦𝑦2)2)   (1) 

Finally, the cumulative estimated cost through each node 𝑛𝑛 is calculated as: 

𝑓𝑓(𝑛𝑛) = 𝑔𝑔(𝑛𝑛) + ℎ(𝑛𝑛)     (2) 

The algorithm operates within a loop and selects the node with the lowest 𝑓𝑓(𝑛𝑛) value at each step. Upon reaching 
the destination node, the shortest path is identified and reconstructed by back tracing from the goal node using parent 
pointers.  

The basic steps of the A* algorithm are as follows (Hart, Nilsson & Raphael, 1968): 
1) At the beginning, the open list has to be defined and the start node selected. The closed list is initialized, too, 

as an empty one. The 𝑔𝑔 value of the start node is set to 0 and its 𝑓𝑓 value is calculated using heuristics. 
2) The loop runs until the open list is empty or the target is reached. The loop runs on selecting the node with the 

lowest 𝑓𝑓 value from the open list. If the selected node is the target node, the loop is terminated. Otherwise, the 
node must be moved to the closed list, and the loop continues running. 

3) When the target node is reached, the path is reconstructed by back tracing from the target to the start node 
using parent pointers. These parent pointers effectively record the paths taken during the search. 

In the explained steps, non-traversable nodes (land) are excluded from the search process, ensuring that the 
algorithm considers only viable paths through navigable waters. 
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Figure 2. The 1000x1000 pixel search matrix comprises zeroes (white, representing water) and ones (black, representing 
land). 

Figure 2 illustrates the A* algorithm's solution for the shortest route between the starting position (indicated by the 
blue dot) and the destination (indicated by the green dot), along with the total route distance measured in nautical miles. 

By applying the A* algorithm to every combination of proposed SAR facility locations and documented accidents, 
the facility with the most optimal route to each accident was determined. Following that, the frequency of cases in which a 
facility was identified as the one with the shortest path to each accident was determined. This procedure made possible the 
assessment of the appropriateness of each proposed SAR facility site based on the proximity and accessibility of locations 
with the highest number of accidents. 

4. RESULTS 

The statistical analysis of the recorded accidents provides insight into the frequency of (SAR) operations along the 
eastern Adriatic coast (territorial waters of the Republic of Croatia) over the analysed period. Figure 3 illustrates a heat map 
of the interventions recorded in the area. 

 

Figure 3. Heat map of recorded interventions in 2017-2023. Colour is proportional to the spatial density of interventions. 
The red colour represents the highest density of interventions. 

The results of the A* model, which was fed with data as described in chapter Methods, are shown in Table 1, column 
‘Count’. The algorithmic decision-making process must be further refined to select specific proposed locations as the best 
solutions for the SAR facility. This refinement is necessary for managing situations where the A* model assigns similarly high 
scores to two or more proximate locations. In addition, it facilitates the inclusion of a degree of redundancy for locations 
significantly affected by the number of interventions. 
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Only specialised vessels defined as primary maritime rescue units were included in further research (the ones 
managed by MRCC). Other units with different roles that could be used if needed were not included in the research because 
their permanent mooring location was defined by different criteria. 

The proposed distribution of the SAR fleet for every site was determined based on the proportionality of its number 
of interventions (counts). The allocation was calculated using the following equation: 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
∑(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) ⋅ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡    (3) 

In this equation, the term 'count' in the numerator represents the number of interventions calculated by the A* 
model for a specific location, and the denominator represents the total of the counts across all selected SAR locations, as 
outlined in Table 1. In this case, one unit was chosen for the results from Equation 3, where decimal value is less than one. 
Similarly, two units were chosen in cases where the result exceeded two. This approach acknowledges the value of 
redundancy in high-demand SAR scenarios, although deploying more than two units to a single location can be considered 
excessive. Nonetheless, this strategy allows for adjustments based on practical field experience. For the results between 1 
and 2, the value is rounded to the nearest whole number to determine the allocation of surface SAR units per location. 
Consequently, the total number of deployed units is 45, with three units remaining in reserve, adding up to 48. These reserve 
units are available for reallocation where needed, such as during vessel maintenance periods. Although alternative methods 
for assigning units per location exist, they depend primarily on the size of the reserve unit. The ultimate geographical 
distribution of these units is illustrated in Table 1 under the “Number of units” column and in Figure 4. 

Locations Count Number of units 

Umag 25 1 
Poreč 30 1 
Pula 52 1 

Rijeka 51 1 
Crikvenica 20 1 

Stara Baška 29 1 
Senj 59 1 

Susak 28 1 
Rab 47 1 
Pag 24 1 

Starigrad Paklenica 41 1 
Silba 95 2 
Molat 125 2 
Veli Iž 146 2 
Zadar 102 2 
Sali 194 2 

Piškera (Kornati) 49 1 
Biograd na Moru 39 1 

Vrgada 72 2 
Prvić Šepurine 161 2 

Brodarica 122 2 
Rogoznica 85 2 

Trogir 43 1 
Split 43 1 
Milna 33 1 
Bol 21 1 

Hvar 44 1 
Komiža 51 1 

Ubli 29 1 
Vela Luka 25 1 
Korčula 29 1 

Ploče 30 1 
Kozarica 58 1 
Koločep 83 2 
Cavtat 22 1 

   
Total = 35 Total = 2017 Total = 45 

Table 1. The final choice of SAR sites with the most approximate count of recorded incidents and proposed number of 
surface SAR fleets derived by the algorithm. Locations are sorted out geographically from the northwest toward the 

southeast. 
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Figure 4. Geographic map of selected locations for surface SAR fleet distribution, with indicated number of vessels for 
each selected location 

5. DISCUSSION 

In previous chapters, a unique solution to the challenge of determining the spatial distribution of surface SAR units 
was presented. A better distribution will consequently lead to more efficient and successful SAR operations. The 
methodological approach described herein represents a novel idea that, to the best of the authors’ knowledge, has not been 
used before. Using the A* search algorithm, the statistical distribution of maritime accidents was evaluated to estimate the 
ideal distribution of surface SAR units, taking into consideration the existing facilities needed for the vessels and the crew. 

Although the proposed model was applied to the actual statistical distribution of maritime accidents in Croatian 
waters, the same approach could be applied anywhere in the world.  The results of this model should be used only as an 
example of how the model could be utilised, rather than as an actual recommendation on how to distribute the surface SAR 
fleet in Croatian waters. This approach has several limitations that should be addressed in the future use scenario. 

Compared to simple mathematical solutions based on explicit distance equations, this approach can solve complex 
navigational problems, such as searching for the shortest paths between two points and acknowledging non-navigable areas 
(path obstacles, that is, land). This strong feature makes it especially useful for solving the issue of optimal surface SAR fleet 
distribution in complex navigation areas with many small islands and rugged coastlines, such as Croatian, Greek, Canadian, 
and Indonesian waters. 

Apart from the example where the model is based on statistics including all months, a more detailed approach can 
be adopted, too. For example, the seasonal optimisation of surface SAR fleet distribution can also be calculated when using 
specific seasonal statistics for maritime accidents. 

The limitations of the model pertain to the statistical data which lack sufficiently detailed information on maritime 
accidents. This problem is multifaceted; for example, Strabić et al. (2023) emphasise the importance of detailed information 

in identifying the root cause of accidents, and their prevention. They proposed the optimisation of the existing data collection 
and processing system. The existence of several private companies that offer assistance in Croatian waters reduces the 
completeness and accuracy of the statistical dataset obtained from governmental MRCC. If this approach was an actual 
recommendation for surface SAR fleet distribution, this statistical deficiency would need to be addressed before feeding the 
algorithm with the data. 

Data on meteorological conditions, sea depth, and SAR vessel drafts were not covered in the model. The locations’ 
infrastructure (accommodation, food, and fuel) and the speed of each type of maritime unit (the average value taken) were 
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not included either. When determining the routes, the grid resolution the algorithm utilises is not sufficient to represent 
narrow sea passages (straits), which often results in the selection of a longer route. There are several datasets with finer 
land and sea grids (ex. SRTM, ASTER, etc.) which should be used for a more realistic application of this model. 

Furthermore, this paper does not address any benchmarking of the proposed solution. Therefore, it is currently 
unknown how it compares to solutions proposed by other authors. However, the lack of previous research to solve the 
optimal spatial distribution in Croatian waters makes the direct comparison to the existing theoretical solutions complex. 
Therefore, the authors emphasise the ultimate need for further evaluation and research on this subject before the solution 
can be recommended to the decision-making authorities. 

If proven useful, by future research, the existing surface units could be analysed based on their characteristics and 
aerial and surveillance units could be taken into consideration in order to create an optimal network of all available SAR units 
within the system. Such a goal could represent a complete solution to the optimal SAR distribution in Croatian waters. 

6. CONCLUSION 

The stunning natural beauty and diversity of the Croatian coastline have significantly bolstered the tourism industry, 
particularly the nautical sector. The steady growth in charter operations, combined with the influx of foreign yachts and boats 
into Croatian territorial waters, has led to a slight increase in the number of maritime accidents. This trend emphasises the 
need for enhanced SAR service optimisation. Therefore, ensuring maritime safety and the optimal distribution of SAR units 
present significant challenges. 

In this study, an attempt was made to address this challenge by creating a model that could be used for the 
deployment of surface SAR units. The model utilised statistical data for the period from January 2017 to October 2023. The 
final result was a selection of 35 locations along the Croatian coastline and archipelagos. 

Although limited by certain factors, this model can be applied to other coastal/archipelagic waters, including 
complex navigation areas. The model could be further improved by including additional parameters and constraints, as well 
as other types of units to create a more complex and optimised network of SAR units in every area. 
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