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This study explores the integration of artificial intelligence in aquaculture to differentiate healthy fish from those 
afflicted with diseases, aiming to establish a real-time, automated epizootic monitoring system. Utilizing the “Inception v3” 
convolutional neural network, we examined the model's efficacy in classifying fish based on their health status across two 
experiments focusing on data augmentation variability. Initial results without augmentation showed diseased fish detection 
with 86.7% accuracy and healthy fish detection with 86.9% accuracy. However, employing diverse augmentation techniques 
significantly enhanced detection accuracy to 96.9% for diseased fish and 96.7% for healthy specimens. These findings 
underscore the potential of computer vision technologies in revolutionizing epizootic monitoring in aquaculture by providing 
a non-invasive, accurate, and scalable solution to fish health management. The successful application of AI in this context 
could significantly contribute to the sustainability and productivity of aquaculture operations, underscoring a pivotal shift 
towards more advanced and humane practices in the industry. 
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1. INTRODUCTION 

Aquaculture has a key role in ensuring food security and economic stability in many countries worldwide. It provides 
a consistent and sustainable source of high-quality protein, essential for human nutrition. Notably, fisheries and aquaculture 
supply approximately 17% of the world's animal protein (Ababouch and Fipi, 2015). This statistic emphasizes the vital 
contribution of aquaculture to global food supplies, especially in regions where other protein sources may be scarce (Naylor 
et al., 2023; Youn et al., 2014). Furthermore, the economic relevance of aquaculture extends to creating jobs, developing 
rural areas, and generating income. In numerous coastal and inland communities, aquaculture operations are a source of 
livelihood for thousands of people. The expansion of the aquaculture sector stimulates economic growth, which is particularly 
critical in developing regions (Bennett et al., 2021). 

Many countries have had a rapid growth in aquaculture production in recent years. For  instance, in the Russian 
Federation, over the past five years, the efficiency of aquaculture has increased by more than 50%, amounting to 353 
thousand tons in 2021 (Bartley et al., 2015; Vasilyeva et al., 2019). Growing fish consumption is currently a trend in both 
developed and developing countries, due to the significant growth in the world's population. According to estimations 
(Kobayashi et al., 2015), global production will increase to 186 million tons by 2030.  

Healthy aquaculture practices are closely linked to environmental sustainability. Sustainable aquaculture is essential 
for maintaining the environmental balance of aquatic ecosystems (Cribb, 2010; Frankic and Hershner, 2003; Neori, 2009). 
Well-managed aquaculture operations can help lower the pressure on overexploited wild fisheries, thereby contributing to 
the preservation of marine biodiversity (Walker and Mohan, 2009). 

However, given that aquaculture minimizes the environmental impact of fish farming, its environmental potential 
can not be underestimated. Ensuring the health of aquatic organisms is of utmost importance in the prevention of the spread 
of diseases and pathogens to wild populations (Oidtmann et al., 2011). Disease outbreaks in aquaculture can have 
devastating consequences, including the loss of valuable fish stocks, the spread of pathogens to natural habitats, and 
detrimental impacts on the broader ecosystem (Naylor et al., 2005). 

Traditional methods of monitoring fish diseases in aquaculture often entail visual inspection and manual 
assessment, which have various limitations (Hong et al., 2014; Purcell et al., 2014). These limitations include the labor-
intensive and time-consuming nature of visual inspections, as they require significant human resources and can cause delays 
in disease detection and response (Macaulay et al., 2021). Additionally, human assessment is subjective and prone to 
variations between individuals, leading to inconsistent results. These methods may also fail to detect subtle signs of disease 
in the early stages (Føre et al., 2018; Li and Du, 2022). Furthermore, the handling and close examination of fish characteristic 
of traditional monitoring methods can induce stress in aquatic organisms, which is detrimental to their health and overall 
growth (Lushchak, 2011). This stress factor poses a significant challenge, as reducing stress is vital for optimal aquaculture 
production. Moreover, traditional monitoring methods are often not scalable, particularly in the context of large-scale 
industrial-type aquaculture farms with extensive fish populations (Arlinghaus et al., 2002; Hook et al., 2014). The limitations 
of these techniques highlight the need for innovative approaches, such as computer vision and artificial intelligence, capable 
of addressing these challenges and changing the way we monitor fish health in aquaculture settings. 

Given these challenges, the integration of artificial intelligence and neural networks into aquaculture monitoring 
emerges as a compelling solution (Føre et al., 2018). AI-based approaches, such as the use of deep neural networks, like 
the Inception model, have the potential to change disease detection in aquaculture (Cui et al., 2020). By automating the 
monitoring process, AI reduces labor requirements, minimizes stress on aquatic organisms, and enhances the accuracy and 
speed of disease detection. This technology addresses the limitations of current methods and aligns with the goals of 
efficient, sustainable, and environmentally responsible aquaculture practices (Li and Du, 2022). 

Recently, due to the development of artificial intelligence technologies, an approach based on replacing human 
assessment with a trained model for detecting various objects using neural networks is gaining popularity (Ahmed et al., 
2021; Krivoguz, 2020; Krivoguz and Borovskaya, 2021). This method of epizootic fish monitoring minimizes handling and 
thermal stress of aquatic organisms. 

Advancements in artificial intelligence have ushered in a new era of epizootic monitoring, offering a powerful tool 
to enhance our understanding of animal health and well-being (Hu et al., 2021). Computer vision, a subset of AI, has gained 
significant importance due to its ability to replace human assessments with trained models, particularly in the context of 
detecting various objects, including animals, using neural networks. This transformative approach has wide-reaching 
implications for epizootic monitoring, with a particular emphasis on fish health in aquaculture (Li et al., 2002). Computer 
vision leverages the capability of machines to “see” and interpret visual information, making it an ideal candidate for 
monitoring animals in their natural or captive environments (Ahmed et al., 2021; Ciaburri et al., 2020; Sikder et al., 2021). 
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While the application of computer vision spans various fields, including agriculture, wildlife conservation, and livestock 
management, its role in epizootic monitoring is hugely important (Sun et al., 2021). The key elements of computer vision for 
epizootic monitoring include several critical aspects. First, computer vision relies on automated object detection, which has 
been transformed by neural networks, particularly convolutional neural networks (CNNs). These advanced algorithms 
outperform at object detection and can discern and classify animals, including fish, in images or video streams with 
exceptional accuracy. Another key aspect is real-time monitoring. Computer vision systems equipped with neural networks 
have real-time capabilities, enabling immediate response to potential disease outbreaks or deviations in animal behavior. 
This rapid response is irreplaceable for effective disease management, as it allows for timely intervention and mitigation. 

Additionally, computer vision-based monitoring stands out for its non-intrusive surveillance capabilities. In contrast 
to traditional methods that often needs physical contact with animals, computer vision operates without direct impact. This 
non-intrusive method minimizes the need for handling and reduces thermal stress to aquatic organisms, thereby supporting 
their overall health and well-being. In the context of aquaculture, where the health and well-being of fish are of great 
importance, the application of computer vision offers several advantages. These advantages are instrumental in enhancing 
the efficiency, sustainability, and overall management of fish farming operations. Foremost among these advantages is early 
disease detection. Computer vision algorithms have the capability to identify subtle and early signs of disease in fish, often 
before any visible symptoms. This early detection is key to timely intervention and disease management, reducing the risk 
of widespread outbreaks and potential economic losses. Additionally, computer vision offers high throughput capabilities. 
AI-driven systems can swiftly and accurately process high volumes of visual data, rendering them highly suitable for 
deployment in industrial-scale aquaculture farms with extensive fish populations. This efficiency ensures that monitoring 
efforts can scale up to meet the demands of large operations. 

One of the features of computer vision is its capacity for continuous monitoring. Unlike human-centric monitoring, 
computer vision operates 24/7 without interruption, ensuring that no potential issues or deviations in fish behavior are 
overlooked (Wu et al., 2022). This continuous vigilance extends to nighttime and adverse weather conditions, providing a 
comprehensive view of the aquaculture environment (Cheng and Sun, 2014). 

Furthermore, computer vision-generated data give important information on the various aspects of fish behavior, 
stress levels, and habitat preferences. This data-driven approach contributes significantly to the improvement of aquaculture 
practices, enabling farmers to make informed decisions based on a deeper understanding of their fish populations (Cheng 
et al., 2015). This knowledge can optimize feeding regimes, reduce stress on fish, and improve environmental management 
in aquaculture facilities (Biazi and Marques, 2023). Despite these advancements, the application of computer vision in 
disease monitoring in aquaculture remains underexplored. Current practices in the field have yet to fully leverage AI's 
potential to improve fish health monitoring by enabling early detection of diseases, reducing reliance on manual inspections, 
and facilitating scalable, non-invasive monitoring techniques. 

This study seeks to bridge this critical gap by examining the application of computer vision, coupled with deep 
neural networks for real-time, accurate detection of diseased fish in the aquaculture environment. This research is poised at 
the frontier of integrating AI technologies with aquaculture management practices, aiming to validate the efficacy of these 
tools in enhancing disease detection capabilities. By focusing on the development and testing of an AI-based monitoring 
system, this paper addresses the need for innovative solutions that can provide early warning of health issues in aquaculture 
operations, thereby mitigating potential economic losses and supporting the sustainability of the industry. The significance 
of this research lies in its potential to set a new standard for fish health monitoring, moving beyond the constraints of 
traditional methods towards a more efficient, accurate, and scalable approach. By leveraging the latest advancements in AI 
and machine learning, this study not only contributes to the field of aquaculture management but also opens new areas for 
the application of technologies capable of supporting sustainable practices in the area. 

In this research, our primary objective was to explore the potential to distinguish between diseased and healthy 
fish. This exploration serves as the foundation for the long-term vision of establishing an autonomous, real-time epizootic 
monitoring system created for use in industrial-type aquaculture farms utilizing pond-based fish cultivation. 

The paper has the following structure. The second chapter, "Previous and related papers", gives an overview of 
prior research on the use of neural networks to recognize underwater objects and classify them by fish species. The third 
chapter, "Model overview", is an in-depth examination of the model utilized, specifically Inception v3, and gives a 
comprehensive analysis of its key elements and methodologies used to train and assess its performance. Chapter Four, 
"Model validation", describes the process of model validation using k-fold cross-validation. Chapter Five, "Data description 
and preprocessing", outlines the methodology of the collection and preparation of data used to train and test the model. It 
places special emphasis on the role of data augmentation techniques and their effect on model performance and accuracy. 
Chapter Six, "Fish disease detection using convolution neural network concepts", discusses the two stages of system 
development and implementation for epizootic fish monitoring: the build phase and the deployment phase. It describes key 
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processes, including image processing, image embedding, and the use of neural networks for classification. Chapter 
"Results" presents the findings of two experiments, one conducted with and one without data augmentation. It also discusses 
the performance metrics obtained in each case. Chapter "Discussion" contextualizes the results of this study within the 
broader research area and compares them to similar work in the field. 

2. PREVIOUS AND RELATED PAPERS 

In our previous paper (Sobolev et al., 2022), we  demonstrated that it was possible to detect underwater objects in 
real time. In this case, the YOLO v4 Darknet architecture was used, as well as a set of data we collected on five types of 
underwater objects in the Sea of Azov – “Jellyfish”, Liza haematocheilus adults and juveniles, “Neogobius” and 
“Syngnathus”. The trained model delivered satisfactory real-time underwater object detection results, with 85-100% mAP 
accuracy and average 11.3 FPS. Despite its high detection accuracy, low FPS does not justify the full use of this model in 
real-time underwater object detection and classification; therefore, we intend to use a more lightweight YOLO v5 tiny model 
in the future. Nevertheless, the task of recognizing underwater objects is not new and currently has a large basis of research. 
For example, paper (Park and Kang, 2020) considers the recognition of fish, in order to distinguish them from the total mass 
of invasive species that can cause significant harm to existing ecosystems, because, in their opinion, manual classification 
and counting are quite complex and resource  consuming. The authors attempted to address the issue by using YOLO 
architecture, which has a good level of accuracy in real-time object recognition by splitting streaming video into separate 
frames and identifying objects on each of the received frames, to later merge them into a new video file. As a result, having 
trained a model with the YOLO architecture, they managed to achieve object classification accuracy of 93% and 97% for 
Bluegill and Largemouth, respectively. Another good example is (Cui et al., 2020) where a convolutional neural network was 
used to detect fish using an Autonomous Underwater Vehicle (AUV). The dataset collected in the Gulf of Mexico was 
augmented to increase the number of training objects and the variety of potential fish positions in the camera frame. In 
addition to augmentation, the authors also applied approaches to simplify and increase the speed of the neural network 
training process to optimize system speed in real time. 

The classification of fish by epizootic status has also been considered in a number of papers by various authors 
who used different approaches. For example,  (Ahmed et al., 2021) consider the use of the Support Vector Machine with 
kernel function to determine salmon infestation through the application of augmented and non-augmented datasets. As a 
result, the authors managed to achieve classification accuracy levels of 94% and 91%, respectively. Another example is 
(Sikder et al., 2021), where the Multi-Support Vector Machine (M-SVM) and k-means clustering in the MATLAB environment 
were used for the automated detection and recognition of infected fish in the Rangamati Kaptai Lake in Bangladesh. The 
algorithms achieved 96% and 98% accuracy, respectively, allowing the trained system to detect infected fish at an early 
stage and administer timely treatment. 

3. MODEL OVERVIEW 

The “Inception v3” model is a convolution neural network, developed by Google for object recognition in images 
(Szegedy et al., 2016). In December 2015 the third version of “Inception” was published, where the method of package 
normalization was used. This method is based on calculating the average and standard deviation for all feature distribution 
maps in the output layer and its normalization using these values. The last layer of the “Inception” model is a pooling layer 
with the “softmax” function.  

One of the requirements for training a new dataset on the “Inception” model is to set the resolution of the input 
images to 299x299 pixels using, for example, cubic interpolation. This convolution neural network architecture, according to 
its developers, is promising and can be used to perform a large number of different tasks, as confirmed by different 
benchmarks and tests (Szegedy et al., 2015). 
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Figure 1. Conceptual scheme of Inception v3 model architecture 

4. MODEL VALIDATION 

K-fold cross-validation is a procedure that mitigates the limitations of working with limited datasets (Wong and 
Yeh, 2020). It involves partitioning the dataset into “k” equally sized subsets, where “k” represents the number of groups or 
“folds” into which the data are divided (Fushiki, 2011; Jung, 2018). In our study, k-fold cross-validation was used to rigorously 
evaluate the performance of our model's predictions. 

K-fold cross-validation is instrumental in assessing the robustness and generalization ability of a model. By 
partitioning the data into multiple subsets and iteratively training and evaluating the model on different subsets, we mitigated 
the risk of overfitting or underfitting. This approach provides a more accurate estimate of the model's performance on unseen 
data, which is vital for its real-world applicability. 

Within the context of k-fold cross-validation, several performance metrics were meticulously assessed to gauge 
the model's effectiveness in distinguishing between diseased and healthy fish: 

1. AUC (Area Under Curve). AUC quantifies the overall discriminative power of the model. It represents the probability 
that the model will correctly rank a randomly chosen positive instance higher than a randomly chosen negative 
instance. A higher AUC indicates better discrimination (Sokolova et al., 2006; Tuzcu et al., 2019). 

2. Classification Accuracy. This metric calculates the ratio of correctly classified instances and the total number of 
instances. It provides a straightforward measure of overall prediction accuracy (Krivoguz et al., 2022). 

3. F-score. The F-score is the harmonic mean of precision and recall. It provides a balanced evaluation of the model's 
ability to correctly classify both positive and negative instances, particularly valuable when dealing with imbalanced 
datasets (Sokolova et al., 2006). 

4. Precision. Precision measures the proportion of true positive predictions among all positive predictions made by 
the model. It signifies the accuracy of positive predictions (Goutte and Gaussier, 2005). 

5. Recall. Recall, also known as sensitivity or true positive rate, quantifies the model's ability to correctly identify all 
positive instances among the actual positive instances (Goutte and Gaussier, 2005). 

5. DATA DESCRIPTION AND PREPROCESSING 

This study utilizes the “Inception v3” convolutional neural network to classify fish into healthy and diseased 
categories based on visual cues. The dataset comprising images of various fish species in different health states from publicly 
available sources was collected (Sikder et al., 2021). The dataset included 153 images, with 72 depicting infected fish and 
81 healthy specimens (Fig.2). Each image was reviewed and labeled by veterinary experts in aquatic health to ensure 
accuracy in the health status classification. 
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Figure 2. Examples of healthy and infected fish in the dataset 

Given the input specifications of the “Inception v3” model, all images were resized to 299x299 pixels using cubic 
interpolation to maintain image quality. To augment the dataset and simulate a variety of environmental conditions that might 
affect visibility underwater, several augmentation techniques, including rotation, mirroring, and brightness and contrast 
adjustments were applied. This process aimed to enhance the model's robustness by training it on images that reflect the 
diverse and dynamic conditions encountered in aquaculture settings.  

The key step in dataset preparation involved the categorization of fish images into two distinct classes – “infected” 
and “healthy”. This binary classification is essential for training and testing the model's ability to distinguish between the two 
states. 

Model training was initialized using the pre-trained “Inception v3” weights, leveraging transfer learning to adapt 
the model to the specific task. The dataset was split into training (70%), validation (10%), and test (20%) sets. This distribution 
allowed to train and fine-tune the model while evaluating its performance on unseen data. The k-fold cross-validation with 
k=5 to ensure the reliability of results was used, mitigating the potential for overfitting and ensuring that the model's 
performance accurately reflects its generalizability. 

To evaluate the model's efficacy in accurately classifying fish health status, several key performance metrics were 
calculated: Area Under the Curve (AUC), classification accuracy, precision, recall, and F1 score. These metrics provided a 
comprehensive overview of the model's predictive capabilities, with a particular focus on its ability to balance sensitivity and 
specificity in disease detection. 

All statistical analyses were conducted using Python's SciPy and NumPy libraries. The chi-squared test was used 
to assess the significance of differences between the model's performance on the augmented versus non-augmented 
dataset, setting the significance level of p<0.05. 

6. FISH DISEASE DETECTION USING CONVOLUTION NEURAL NETWORK CONCEPTS 

In perspective, the development and deployment of a real-time system for the recognition and detection of 
infected fish can be divided into two distinct stages: the “building stage” and the “deployment stage” (Figure 3). This 
comprehensive approach ensures the system's effectiveness and reliability in practical aquaculture applications. 
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Figure 3. System architecture for fish disease detection using the convolution neural network. 

The basis of this system is laid in the building stage, where 70% of the total images from the fish dataset were 
used for training purposes. This initial stage involves critical processes preparing the model for robust performance. Data 
pre-processing takes the forefront, encompassing techniques such as data augmentation, rotation, mirroring, conversion to 
grayscale, and brightness and contrast adjustments. These modifications contribute to the dataset's diversity and ensure 
that the model is exposed to various scenarios. Subsequently, the pre-processed dataset is converted into digital format 
suitable for further processing by the neural network model. The training stage follows during which the model learns and 
adapts through the weighted adjustment of its neurons. Concurrently, meticulous accuracy checks are conducted to 
ascertain the model's proficiency. 

Transitioning to the deployment stage, the system is installed directly at the fish growing pond, where real-time 
monitoring is crucial. The process begins with the obtainment of images directly from the aquaculture environment. As with 
the building stage, data pre-processing steps are executed to ensure the suitability of incoming images for analysis. This 
involves the transformation of the data obtained into a digital format compatible with the trained neural network model. 
Subsequently, the transformed data are input into the neural network model, which has already been trained rigorously in 
the building stage. At this point, the classification process unfolds, with the system making real-time determinations, 
classifying each image as either “healthy fish” or “infected fish”. Notably, the system also has the prediction accuracy 
visualization option, allowing operators to gauge the confidence level of the classification. 

7. RESULTS 

An ASUS laptop with Intel i7-11370H (4 cores, 3.30 GHz) CPU, 16 GB DDR4 memory and NVIDIA GeForce RTX 
3050 (4 GB) graphic card was used for calculation. The dataset was divided as follows: 70% training data, 10% validation 
data, and 20% test data. 

The primary objective of this paper was to assess the learning capabilities of the model that would allow it to 
recognize and classify fish based on their epizootic status. To accomplish this, the pre-trained “Inception v3” model was 
used, known for its deep learning capabilities. For the practical implementation and testing of the model, Python, a versatile 
and widely adopted platform for machine learning and deep learning tasks was used. Python provides a rich ecosystem of 
libraries and tools, making it an ideal choice for research. The power of several key libraries and frameworks was used, 
namely, the TensorFlow framework, a leading open-source machine learning library that seamlessly integrates with Python. 
TensorFlow served as the backbone for model development and training, offering a robust foundation for deep neural 
network architectures. In addition to TensorFlow, other Python libraries for data manipulation, image processing, and 
evaluation were used extensively. These included NumPy for efficient numerical operations, OpenCV for image pre-
processing, and scikit-learn for various machine learning applications. The combination of these libraries facilitated data 
preparation, model training, and result evaluation in a coherent and efficient manner. 
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The system was tested using two experiments differing mainly in data augmentation. An overview of data 
preparation and augmentation carried out by the authors in the first and second experiment is given in Table 1. 

Image modification 1st experiment 2nd experiment 

Auto-orient Applied Applied 

Isolate objects Applied - 

Static crop 25-75% horizontal region - 

Resize Stretch to 299x299 pixels Stretch to 299x299 pixels 

Grayscale Applied - 

Tile 2 rows x 2 columns - 

Flip Horizontal Horizontal 

90* rotate Clockwise, Counter-Clockwise, Upside Down - 

Table 1. Data preprocessing and augmentation settings used in both experiments on fish detection and classification 
based on their epizootic status 

In the first experiment, an attempt was made to increase the number of potential variations of physical-optical 
conditions in the aquatic environment, as well as of fish behavior under such conditions, which, in our opinion, should 
significantly increase the accuracy of detection and classification of fish infected with diseases. In the second experiment, 
we tried to keep the standard conditions which the infected fish were in at the time of their capture. 

The model training in both experiments showed that more accurate results are obtained when using an 
augmented data set (Table 2).  

 AUC Classification accuracy F-score Precision Recall 

Data without augmentation 0.889 0.877 0.868 0.877 0.877 

Data with augmentation 0.993 0.957 0.957 0.957 0.957 

Table 2. Training results for the 1st and 2nd experiment 

This is mainly due to the greater variability of the initial data and, accordingly, many different potential conditions 
in which the infected fish can be. But it should also be noted that the level of accuracy of the models in both experiments is 
not significant; therefore, in this case it is more worth focusing on speed and cost indicators used for learning to deploy the 
trained model in practice. 



 

Trans. marit. sci. 2025; 01 ~ Krivoguz et al.: Real-Time Epizootic Monitoring… 9 

 

Figure 4. ROC-curves for A – infected class and B – healthy class on data with augmentation 

Classification results, presented in the confusion matrix form, also indicate the need to use augmentation to detect 
infected fish in the ponds (Fig.5.) 

 

Figure 5. Confusion matrices for training without augmentation (A) and with augmentation (B) 

A Infected Healthy 

Infected 86.7% 13.1% 

Healthy 13.3% 86.9% 

B Infected Healthy 

Infected 96.9% 3.3% 

Healthy 3.1% 96.7% 

Table 3. Model parameters 

Thus, in the original dataset, only 86.7% of images for the infected class and 86.9% for healthy fish were correctly 
classified. At the same time, the use of various augmentation tools significantly increased detection accuracy up to 96.9% 
for infected and 96.7% for healthy fish. This suggests that in both experiments, the images of healthy specimens were 
recognized with higher accuracy than those of diseased fish, which might be explained by barely discernable visual 
manifestations of diseases in some cases, given that in the initial stages of infection the disease occurs within the organism, 
without causing significant external changes in scale color or any other physiological features of the fish (Tab.3).  

8. DISCUSSION 

This research applied computer vision methodologies within the framework of an aquaculture disease monitoring 
system, using the Inception v3 convolutional neural network to differentiate between infected and healthy fish. The 
incorporation of this methodology in combination with data augmentation has resulted in improved classification accuracy, 
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reaching a success rate of 96.7% and 96.9% for healthy fish and infected fish, respectively. The outcomes of this study not 
only demonstrate the efficacy of these methodologies but also stress the importance of data augmentation in simulating 
diverse scenarios that reflect the natural environment of the subjects, which is essential when working with limited data sets. 

This study clarifies the potential for significant transformative advancements in the field of aquaculture through the 
implementation of computer vision, which is a substantial improvement of traditional monitoring methodologies. The 
integration of computer vision algorithms facilitates noninvasive, real-time monitoring of aquatic organisms, considerably 
improving disease management and operational efficiency. The implementation of this technology allows the identification 
of disease in inception stages, frequently preceding the manifestation of observable symptoms, thereby allowing fast 
intervention. This capacity for early detection, as evidenced by the high accuracy metrics recorded in the model, proves the 
efficacy of computer vision systems in detecting subtle indicators of illness that human observers might otherwise neglect. 

Traditional monitoring techniques, which primarily rely on manual and visual inspection, are deficient in several 
aspects. These methods require a substantial amount of labor, are prone to human error, and are fundamentally restricted 
with respect to scalability and sensitivity. Moreover, such traditional techniques may induce stress in fish, potentially 
adversely affecting their health and behavior. By contrast, computer vision offers a scalable, precise, and non-stressful 
alternative, capable of processing significant quantities of visual data swiftly and with minimal human intervention. This 
advancement not only decreases the dependency on manual labor but also reduces the risk of human-induced stress on 
fish, thereby promoting healthier and more stable aquaculture environments. 

The findings of this study highly correlate with those of similar research in the field of computer vision, which have 
sought to detect a range of infectious pathologies in fish. For instance, in the Azhar (Azhar et al., 2024) study, the GoogleNet 
convolutional neural network architecture was used instead of the Inception v3 architecture to diagnose white spot protozoal 
disease. The resulting model had the accuracy of approximately 90%, which is notable given the complexity of the disease. 
Another noteworthy example of the application of computer vision in epizootic control is the work of Yaoyi Cai (Cai et al., 
2024), in which the NAM-YOLO v7 model demonstrated a 95% accuracy and 93.8% recall rate at the processing speed of 
0.18 seconds per image. The main distinction and benefit of this paper compared to this study is the capacity to detect fish 
condition in real time, which significantly increases the practical value of this approach. Additionally worthy of attention is 
Hasan's study (Hasan et al., 2022), where CNN was used to diagnose white and red spots. The authors achieved the accuracy 
of 94.4% using a limited dataset of 90 images, demonstrating the key role of data augmentation in instances where the initial 
data are insufficient and there is an urgent need to augment them. Augmentation clearly improves model accuracy.  

While this study affirms the effectiveness of data augmentation in improving model performance, it simultaneously 
recognizes certain potential limitations inherent in the approach used. One such limitation is the dependence on a 
predetermined set of augmentation techniques, which may not sufficiently cover the extensive range of environmental 
conditions encountered in aquaculture contexts. Future research would benefit from exploring more advanced and diverse 
augmentation strategies, potentially integrating generative models like generative adversarial networks to produce highly 
realistic and varied training images. Additionally, an examination of the impact of augmentation on different categories of 
neural network architectures could yield findings that optimize model selection for specific aquaculture applications. 
Moreover, further research in real-time data augmentation, where modifications are made in real-time in response to existing 
environmental conditions, holds significant promise for advancing the field. Such advancements not only address the 
shortcomings of current methodologies, but also promote the development of more robust, precise, and adaptable disease 
monitoring solutions in aquaculture. 

The practical applications of this technology in real-life aquaculture settings are diverse and have the potential to 
transform disease management practices. The integration of AI-driven monitoring systems allows aquaculture operations to 
transition from a reactive to a proactive approach to fish health management. This allows the early detection of signs of 
disease, preventing the development of visible symptoms or the spread of disease. This capability has the potential to 
significantly reduce mortality rates associated with late-stage disease intervention and minimize the need for broad-spectrum 
antibiotic treatments, thereby enhancing the sustainability of aquaculture practices. Furthermore, the implementation of such 
AI technologies has the potential to significantly reduce economic losses associated with disease outbreaks. By limiting the 
spread of disease at an early stage, farms can ensure higher survival rates, maintain productivity, and sustain revenue. 
Furthermore, the data gathered by these AI systems can offer priceless information on disease prevalence, risk factors, and 
treatment efficacy, thereby contributing to a more comprehensive understanding of aquaculture health management and 
supporting evidence-based decision-making. 

9. CONCLUSION 

This research uses computer vision integrated with the Inception v3 neural network to assess fish health in 
aquaculture environments. The findings from two experiments demonstrate the potential of AI to improve disease detection 
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in fish farming. Computer vision technologies exhibit proficiency in accurately identifying diseased fish and enhancing 
monitoring methodologies. The first experiment, which used comprehensive data augmentation techniques, had the AUC 
accuracy of 99%, illustrating the model's proficiency in differentiating between healthy and diseased fish. The outcomes of 
the experiments clearly show that computer vision can improve fish health monitoring practices in aquaculture facilities. 
Additionally, the findings emphasize the critical role of data augmentation in enhancing the model to imitate the different and 
unpredictable conditions in aquaculture environments. They also demonstrate that data augmentation is important for 
addressing the diverse and complicated conditions typical of aquaculture. This study provides an efficient, and minimally 
intrusive approach to the development of more sustainable fish farming methodologies. Computer vision offers a solution 
for aquaculture to detect diseases with expediency and precision. AI-driven monitoring systems could facilitate disease 
management, mitigate economic losses, and enhance the sustainability of aquaculture practices. 
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