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Selection of Pre-training Datasets for 
Sonar Image Classification 
 

Yannik Steiniger1, Jose Luis Quinones Gonzalez1, Dieter Kraus2, Benjamin Lehmann2 

Deep learning based computer vision models like convolutional neural networks (CNN) and Vision Transformer 
(ViT) are more and more applied for the automatic analysis of sonar images. Since sonar image datasets typically have a 
limited number of samples, transfer-learning is used to train these models. However, commonly used pre-training datasets, 
like ImageNet, have a large domain gap to sonar images, i.e., images in these two datasets are fundamentally different. The 
selection of the pre-training dataset and the related domain gap have shown to have an impact on the final performance of 
the model. In this work, different datasets are analysed for applying transfer-learning to deep learning models for the 
classification of sidescan sonar images. In addition, the study is conducted for shallow CNNs, deeper CNNs as well as ViT. 
We quantify the domain gap using a variational autoencoder (VAE) and the t-distributed stochastic neighbor embedding t-
SNE and link these values to the classification performance of the models after fine-tuning. Our results show that while no 
dataset leads to an improvement of all models, the Fetal dataset works well for most investigated models, while ImageNet 
and its grayscaled version led to a worse performance.  
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1. INTRODUCTION 

Surveying underwater areas is of great interest for the security of maritime infrastructures. However, due to the 
physical properties of water and turbidity of most sea areas, electromagnetic waves experience a high attenuation (Urick, 
2013). Thus, instead of optical cameras, sonar systems, which transmit and receive acoustic waves, are used in the 
underwater domain. Sonar image data is typically captured using autonomous underwater vehicles (AUVs) or ships equipped 
with sidescan or synthetic aperture sonars. These vessels survey the seafloor following a pre-defined path to search for 
sunken objects of interest. Special signal processing routines transform the recorded acoustic signals to form intensity 
images of the seafloor which can be analysed by human operators or computer vision models, e.g., neural networks. 
However, collecting data is cumbersome and costly as it requires specialized personnel and equipment. Additionally, since 
the location of objects is in general unknown prior to scanning the seafloor and the ratio of object vs. seafloor in the captured 
data is low, datasets of relevant objects are very small. Although significant progress has been made in the field of sonar 
image classification, especially by developing specific deep learning models (Phung et al., 2019; Williams, 2021; Steiniger 
et al., 2022; Warakagoda and Midtgaard, 2024), the outcome of deep learning models remains limited due to the need for 
more training data. 

In applications in which the available amount of data is limited, transfer-learning can be applied to improve the 
overall training of the models (Mensink et al., 2022). With this concept, a model is first pre-trained on a large source dataset, 
which does not necessarily represent the final task. In a second step the model is fine-tuned on the real target dataset. For 
classification, one of the most common pre-training dataset is ImageNet (Deng et al., 2009), containing over one million 
optical RGB images and 1,000 object classes. However, as shown in Figure 1, compared to sidescan sonar images, the 
samples from ImageNet are fundamentally different in terms of the imaging sensor, image content and resolution, resulting 
in a large domain gap between ImageNet and a sonar image dataset. Features that are learned by a deep learning model 
using ImageNet might be useless for the later classification of sonar images, e.g., features based on color. Researchers have 
shown that selecting pre-training datasets with a small domain gap to the target dataset can improve the performance of the 
model (Mensink et al., 2022). For sonar image classification, most models which are trained using transfer-learning use 
ImageNet as the source dataset (Warakagoda and Midtgaard, 2024; Sheffield et al., 2024), accepting a large domain gap 
and consequently potential suboptimal performance. To the best of our knowledge, there is no research about which dataset 
should be used for pre-training in the context of sonar image classification. 

  

Figure 1. Sidescan sonar image spanning an area of 50 m×50 m with a resolution of 10 cm per pixel (left) and nine random 
images from the ImageNet dataset (right). 

This paper presents a study on classification datasets, which, compared to ImageNet, are expected to have a 
smaller domain gap to a sidescan sonar image dataset. For measuring the domain gap we calculate the Euclidean distance 
in the latent space of a variational autoencoder (VAE) as well as the Euclidean distance in the t-distributed stochastic 
neighbor embedding (t-SNE) representation. We train different deep leaning models, ranging from a shallow convolutional 
neural network (CNN) used in our previous work (Steiniger et al., 2023) to deeper ones like ResNet-101 as well as Vision 
Transformer (ViT). The classification performance after fine-tuning on our own sonar image dataset is compared to the one 
of the networks trained from scratch. Our main finding is that none of the investigated datasets improves the performance 
of all deep learning models. Additionally, the domain gap is not the only parameter which influences the transfer-learning 
performance but also the size of the pre-training dataset. 

The remaining of the paper is organized as follows: Section 2 introduces the datasets which are investigated in this 
work. Afterwards, Section 3 covers the measurement of the domain gap. The designed networks and training parameters 
are briefly explained in Section 4. In Section 5 the results of our experiments are presented. Finally, Section 6 closes the 
paper with a summary of the main findings and outlook to future work. 
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2. SELECTED DATASETS 

Sidescan sonar data was collected over multiple sea trials in the time span from 2019 to 2023 using an Edgetech 
2205 sidescan sonar mounted on a SeaCat AUV. The sonar image dataset build from these trials was already described in 
(Steiniger et al., 2023). It contains objects from the four classes Tire, Rock, Cylinder and Wreck as well as an additional 
Background class. The number of samples in the training and test set are given in Table 1. Note that the number of test 
samples is larger than the number of training samples. This is due to the number of training images from the classes Rock 
and Background was intentionally limited in the training set to keep it balanced. The test set however is unbalanced with 
these two classes being overrepresented (see (Steiniger et al., 2023) for more details). 

Dataset Classes Training snippets Test snippets Example 

Sonar 5 129 1,486 
 

ImageNet 500 255,772 75,000 

 

ImageNet (grayscale) 500 255,772 75,000 

 

Malo 3 776 98 

 

Fetal 6 7,129 5,271 

 

Ships&Boats 2 812 49 

 

SAR 2 62,981 20,000 

 

Hand X-ray 6 40,637 10,160 

 

Synthetic 3 408 103 

 

Table 1. Datasets investigated for pre-training. 
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One of the most common datasets to pre-train deep learning models for the classification task is ImageNet. 
However, ImageNet contains optical RGB images with a higher resolution and more details than sonar images and thus is 
expected to have a large domain gap to the sidescan sonar dataset. During pre-training with ImageNet the network learns 
features based on color which are meaningless for the target task of classifying grayscaled sonar images. Thus, one criterion 
for selecting the datasets in this work was that the images should be grayscale to ensure a small domain gap. Typical sensors 
whose images fulfill this requirement are ultrasonic transducers, synthetic aperture radar (SAR) or X-ray. Another aspect for 
the selection was the number of training samples, since a dataset used for pre-training should contain more samples than 
the target dataset. We used the data sharing platforms Kaggle and Roboflow to search for open source datasets and selected 
the following ones: Malo (asd, 2023), Fetal (Burgos-Artizzu et al., 2020), Ship&Boats (Ng, 2023), SAR (Wang et al., 2019) 
and Hand X-ray (RF Projects, 2023). Originally, the SAR dataset contains ships to be detected. To use it for a classification 
task, we extract the ships and additional background snippets at random positions. This results in a binary classification 
dataset. In addition to these datasets, we manually modified the images from ImageNet to be grayscale. Table 1 gives an 
overview about the selected datasets regarding the number of classes and number of samples. 

We also setup a simulation using a CAD software where we randomly placed models of ships, tires and rocks in a 
scene to generate a dataset of synthetic sonar images. Within the generated CAD environment, the essential features and 
components are: floor, light, and objects. The floor is an extruded planar surface which extends in a rectangular form. It 
includes different surface elevations along its area and in some other scenarios it also contained a ripple pattern using a 
simple sin( ) function. For better resemblance with real sonar images, an additional sand texture was set to the planar 
surface. In a second step, for enhancing the environment to a more realistic scene, two light sources were placed on the 3D 
assembly. By alternating its location and angle a wide range of possibilities in image diversity was achieved. Finally, the 
objects of interest, e.g., ships, boats and tires, were downloaded from a free CAD source. Only the rock class was manually 
created implementing a free-form option from the same CAD software. 

3. MEASURED DOMAIN GAP 

To quantify the domain gap between the pre-training datasets and the sidescan sonar dataset we first map the 
images to a lower dimensional space, as shown in Figure 2. Afterwards, the Euclidean distance between the center points 
of the datasets in this space is calculated. Mensink et al. propose to use a backbone CNN which was pre-trained on ImageNet 
to extract features of images from the individual dataset and calculate the distance between these feature vectors (Mensink 
et al., 2022). However, since ImageNet is one dataset to be investigated we disregard this approach. In this work, t-SNE as 
well as a VAE are used for the purpose of dimensionality reduction.  

 

Figure 2: Measuring the domain gap using the t-SNE (top) and VAE (bottom) representation. 

The t-SNE method maps the images to a lower dimensional space where images that are similar to each other 
should lie close to each other in the embedding. To achieve this, the Kullback-Leibler divergence between the distributions 
of the similarities of the images and of the similarities of the embedded points is minimized. The initial embeddings are 
determined based on a principle component analysis. In this work and in accordance with common practice we set the 
embedding space to be two-dimensional and run the optimization for 500 iterations. With the VAE, an encoder network maps 
the input images to a lower dimensional latent vector 𝒛𝒛 and a decoder network learns to reconstruct the image from this. We 
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design the VAE to have a latent vector of size two in order to obtain a two-dimensional representation of the images. The 
encoder consists of two convolutional layers with 32 and 64 kernels of size 3×3, respectively. The decoder reconstructs the 
image through a fully connected layer with 16,384 neurons and three transposed convolutional layers with 64, 32 and 1 
kernel of size 3×3. We train the VAE for three epochs with the Adam optimizer in its standard configuration and a batch size 
of 128. 

Because the input size of the classification networks has to be the same for all datasets and the RGB images from 
ImageNet have three color channels while all other datasets contain grayscale images with only one color channel, we repeat 
all grayscale images in the remaining two color channels. Figure 3 (a) and (b) show the distribution of the investigated 
datasets in the t-SNE and VAE embedding space. The center point of each dataset is calculated as the mean embeddings. 
Table 2 lists the Euclidean distances between the sonar and the different source datasets. In the VAE embedding space the 
SAR dataset has the shortest distance to the sonar image dataset. Surprisingly, although sonar images and optical images 
are fundamentally different, the distance between ImageNet and the sonar dataset measured in the t-SNE embedding is the 
smallest compared to the other datasets. This is partly due to the large spread of the ImageNet samples in the embedding 
space which is also present in the VAE embedding space. Comparing the distances for the original and the grayscaled 
version of ImageNet only a slight change is visible with the original one even having a smaller distance in the VAE 
representation. Intuitively, the grayscaled images are more similar to sonar images and should lead a smaller domain gap. 
This shows that both methods might not be optimal to measure the domain gap and further research needs to be done to 
quantify the domain gap between datasets. 

 
(a) 

 
(b) 

Figure 3. Comparison of the domain gap. (a) Based on t-SNE. (b) Based on VAE. 
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Dataset 
Distance based on 

t-SNE VAE 

ImageNet 18.880 1.150 

ImageNet (grayscale) 19.029 1.266 

Malo 41.713 2.516 

Fetal 25.542 1.324 

Ships&Boats 37.788 2.605 

SAR 22.647 0.888 

Hand X-ray 29.334 1.946 

Synthetic 23.321 1.020 

Table 2. Measured distances between sonar and pre-training dataset with the smallest distance indicated in bold. 

Additionally, Figure 4 (a) and (b) show the distance plots for the grayscale images when the input to the network 
only consists of one channel. Thus, the original ImageNet is excluded. The corresponding distance measures are listed in 
Table 3. It can be seen that this modification has only minor influence on the distribution in the t-SNE representation. For the 
VAE the effect is slightly stronger. However, the general distribution of the datasets stays the same. In the three channels as 
well as the one channel case the datasets SAR, Synthetic and Fetal are grouped in the same area. 

Dataset 
Distance based on 

t-SNE VAE 

ImageNet (grayscale) 16.021 0.732 

Malo 31.045 1.163 

Fetal 22.190 0.630 

Ships&Boats 28.534 1.500 

SAR 19.261 0.437 

Hand X-ray 25.876 1.874 

Synthetic 20.490 0.550 

Table 3. Measured distances between sonar and pre-training dataset for one channel inputs with the smallest distance 
indicated in bold. 
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(a) 

 
(b) 

Figure 4. Comparison of the domain gap with one channel input. (a) Based on t-SNE. (b) Based on VAE. 

4. NETWORK ARCHITECTURE AND TRAINING 

We investigate the effect that the different pre-training datasets have on the classification performance of a broad 
variety of neural networks. This includes a shallow CNN used in our previous work (Steiniger et al., 2023), common CNNs 
for image classification as well as a transformer-based architecture. Our shallow CNN consists of three convolutional layers 
with 8, 16 and 32 kernels of size 3×3. The output of a convolutional layer is passed through a ReLU activation function, batch 
normalization and 2×2 max pooling. Features from the last convolutional layer are compressed using a fully connected layer 
with 100 neurons prior to the final output layer. Depending on the pre-training dataset the number of neurons in the output 
fully connected layer matches the number of classes for each dataset, e.g., the CNN trained on the Malo dataset has three 
output neurons. Dropout is added before both of the fully connected layers. All input images are scaled to match the input 
size of the network, which is 64×64 pixel. Furthermore, we use VGG-16 (Simonyan and Zisserman, 2015), ResNet-18, 
ResNet-101 (He et al., 2016), MobileNetv3 (Howard et al., 2019) and ViT-B/16 (Dosovitskiy et al., 2021) in our experiments. 
We selected these models based on their usage in general computer vision tasks and sonar image classification. In addition, 
considering different types of models, e.g., VGG-16 as a shallower network, MobileNetv3 as an edge-computing model and 
ViT-B/16 as a transformer-based model, allows to link our findings to properties of the network architecture.  

We train all five standard models with their original input size. In order to adapt the models for the specific source 
datasets we replace their classification head with the classification head architecture of the custom CNN, i.e., a dropout layer 
followed by a fully connected layer with 100 neurons and ReLU activation function and the output layer. In the following 
experiments a model is first pre-trained on one of the source datasets and afterwards fine-tuned on the sidescan sonar 
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image dataset. When pre-trained on datasets other than ImageNet, we consider two setups. In the first case the models are 
initialized with weights gained from training on ImageNet. This can be considered as an additional pre-training prior to the 
experiments and as a way to close the domain gap while at the same time benefiting from a large general pre-training 
dataset. Note that we were not able to train the custom CNN on ImageNet since its capacity is too low. In the second case 
we randomly initialize all weights. In all cases, pre-training of the standard networks is done for 20 epochs using the Adam 
optimizer. During the first 10 epochs only the adapted classification head is trained with a learning rate of 0.0001, while the 
weights of the remaining layers are kept fixed. Afterwards all layers are trained for the final 10 epochs with a learning rate of 
0.000001. The custom CNN is trained for 50 epochs using a learning rate of 0.0001. As shown in (Gutstein et al., 2022) an 
optimal performance on the source dataset is not necessary to achieve a good transfer learning result. Thus, we did not 
focus on optimizing the performance of the models after pre-training. For fine-tuning on the sonar dataset, the output layer 
is adapted to match the sonar image classification task with five classes, i.e., the output fully connected layer now has five 
neurons. All networks are fine-tuned for 20 epochs with the Adam optimizer and a learning rate of 0.00001 which is reduced 
by a factor of 0.1 after 10 epochs. We experimented with different learning rates and found the reported configuration to 
work best. Additionally, we train all models on the sonar dataset without pre-training. This serves as a baseline, to investigate 
if pre-training is beneficial for sonar image classification. 

5. CLASSIFICATION RESULTS 

To account for the unbalanced test dataset, the classification performance of all models is assessed using the 
balanced accuracy  

𝐴𝐴𝐴𝐴𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏 = 1
|𝒞𝒞|
∑ recall(𝑐𝑐)𝑐𝑐∈𝒞𝒞 …………………………………………..……………….(1) 

and the macro F1-score  

𝐹𝐹1𝑚𝑚𝑏𝑏𝑐𝑐𝑚𝑚𝑚𝑚 = 1
|𝒞𝒞|
∑ 𝐹𝐹1(𝑐𝑐)𝑐𝑐∈𝒞𝒞 = 1

|𝒞𝒞|
∑ 2⋅precision(𝑐𝑐)⋅recall(𝑐𝑐)

precision(𝑐𝑐)+recall(𝑐𝑐)𝑐𝑐∈𝒞𝒞 ,…………………………….(2) 

with 𝒞𝒞 = {Tire, Rock, Cylinder, Wreck, Background}. Figure 5 shows the baseline performance of the models without pre-
training on the source datasets. For the standard models both cases, with and without ImageNet weight initialization, are 
shown. All standard models, except MobileNetv3 for the macro F1-score, show a better performance than the custom build 
CNN, regardless of their initialization method. ResNet-101 with random initialization is the best performing model with 
balanced accuracy of 0.394 and macro F1-score of 0.371. When initialized with ImageNet weights ResNet-101 also shows 
the best overall performance with a balanced accuracy of 0.350 and macro F1-score of 0.271. In the following experiments 
both will serve as the baseline performance for the individual initialization methods. ViT-B/16 is the only model that benefits 
from using ImageNet weights. One reason for this could be that the Transformer can learn more general features from 
ImageNet than the CNNs. However, even with ImageNet weights the performance of ResNet-101 is still better than the one 
of ViT-B/16. Transformer benefit mostly from very large datasets and the available sonar data could be too few to exploit the 
full capacity of the ViT-B/16. 

 

Figure 5. Performance of the models without pre-training on the source datasets. Orange bars show the results for 
standard models whose weights are initialized using ImageNet. 
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After investigating the baseline performance without pre-training, Figure 6 shows the classification performance of 
the individual models pre-trained on the seven source datasets and fine-tuned on the sonar dataset. The models were 
initialized with ImageNet weights, which is our first experimental setup for pre-training. Note that since the shallow CNN 
could not be trained on ImageNet it is not investigated in this initialization case. A green dot in Figure 6 indicates a model-
dataset configuration which improves in the respective metric over the baseline ResNet-101 with ImageNet weight 
initialization. Interestingly, no configuration improves over the previously best performing baseline ResNet-101 with random 
initialization. One reason for this could be that the pre-training phase on the individual datasets is not sufficient to overwrite 
features that were learned from the ImageNet initialization but are not useful for sonar image classification. A red square 
indicates an improvement by pre-training this model on the specific dataset compared to directly training it on the sonar 
dataset. Especially the VGG-16 and MobileNetv3 benefit from pre-training. Using the grayscaled ImageNet dataset for pre-
training leads to a worse performance for all models except MobileNetv3. The ViT-B/16 shows an improved macro F1-score 
for all datasets except grayscaled ImageNet and Ships&Boats. Figure 6 also shows that pre-training mostly improves the 
macro F1-score but not the balanced accuracy. In contrast to the balanced accuracy which only considers the recall, the 
macro F1-score also take the precision and thus the number of false-positive errors into account. For the unbalanced test 
dataset used in this work small improvements in the false-positive error of the underrepresented class have a relatively large 
effect on the precision and thus on the macro-averaged F1-score. At the same time, the effect of the corresponding 
improvement in false-negative error in the overrepresented class on the recall and subsequently on the balanced accuracy 
is minor in case of a large number of true-positives.  

 

Figure 6. Performance after transfer-learning. Models were initialized with ImageNet weights. Green dots indicate an 
improvement over the baseline with ImageNet weights. Red squares indicate improvement compared to results without 

pre-training. 

Figure 7 displays the classification performance of the models with random weight initialization when pre-trained 
on the individual source dataset. Note that the shallow CNN was not pre-trained on grayscaled ImageNet. Compared to the 
previous case where the models were initialized with ImageNet weights it can be seen that less configurations surpass the 
baseline in terms of the macro F1-score. However, four model-dataset configurations improve the baseline balanced 
accuracy with ResNet-18 pre-trained on the Fetal dataset even exceeding the best baseline performance of ResNet-101 
directly trained on the sonar data with a balanced accuracy of 0.425. The shallow CNN pre-trained on Ships&Boats and 
ResNet-101 pre-trained on the synthetic dataset are the only configurations which improve accuracy as well as macro F1-
score. For the case of random weight initialization pre-training is beneficial for the shallow CNN, MobileNetv3 and the ViT-
B/16. However, both experiments have shown that no dataset can clearly be preferred over the others for pre-training the 
models. In addition, due to the small training dataset the achieved performance of all models could still be improved. Besides 
enlarging the dataset with more sonar images, generating synthetic data using generative deep learning models is a 
promising approach (Sanford et al., 2024). 
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Figure 7. Performance with random initialization. Orange star indicates an improvement over the baseline without 
ImageNet and green dots an improvement over the baseline with ImageNet weights. Red squares indicate improvement 

compared results without pre-training. 

 
(a) 

 
(b) 

Figure 8. Classification performance of the deep learning models vs. domain gap between pre-training and sonar dataset. 
(a) Based on t-SNE. (b) Based on VAE.  
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To directly link the classification performance and the measured domain gap, Figure 8 (a) and (b) plot the macro 
F1-score against the Euclidean distance in the t-SNE and VAE representation, respectively. Both figures show that the 
performance slightly drops with increasing distance between the source and the sonar dataset. Note however, that the 
distance not necessarily reflect the intuitive domain gap, since for example ImageNet shows the smallest distance in the t-
SNE representation while expected to have the largest domain gap. Additionally, another important aspect when pre-training 
a deep learning model is the number of training samples. Comparing the classification performance with the size of the 
datasets given in Table 1 it can be seen that Fetal, which improves the performance of many of the considered models, has 
a relatively large domain gap but contains in total 7,129 training images and between 353 and 2,601 samples per class, 
which makes it one of the larger datasets studied in this work. This indicates that a small domain gap itself is not the only 
requirement for a good transfer-learning result. The source dataset also has to be sufficiently large.  

6. CONCLUSION 

This work has presented a study on different pre-training datasets and deep learning models for the classification of sonar 
images. Since the number of sonar snippets is limited, pre-training can be a beneficial way to learn relevant features in a 
first training step. However, the domain gap to the sonar image dataset should be small. Our analysis shows that distance 
measured in the t-SNE and VAE embedding space does not match the intuitive domain gap. Additional work needs to be 
done in order to measure the domain gap more convincingly. Furthermore, pre-training using the Fetal dataset led to an 
improvement for four of the six investigated models in terms of balanced accuracy. However, no general decision about 
which dataset should be used for pre-training can be made because no dataset significantly improved the balanced accuracy 
and macro F1-score of all models. 
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